Contacting mode atomic force microscopy (AFM) is used to measure the In 0.35 Ga 0.65 As/GaAs epilayer grown at low temperature (460℃).Unlike the normal layer by layer growth (FvdM mode) or self organized i...Contacting mode atomic force microscopy (AFM) is used to measure the In 0.35 Ga 0.65 As/GaAs epilayer grown at low temperature (460℃).Unlike the normal layer by layer growth (FvdM mode) or self organized islands growth (SK mode),samples grown under 460℃ are found to be large islands with atomic thick terraces.AFM measurements reveale near one monolayer high steps.This kind of growth is good between FvdM and SK growth modes and can be used to understand the evolution of strained epitaxy from FvdM to SK mode.展开更多
Noble single‐atom catalysts have rapidly been attracting attention due to their unique catalytic properties and maximized utilization.Atomic layer deposition(ALD)is an emerging powerful technique for large‐scale syn...Noble single‐atom catalysts have rapidly been attracting attention due to their unique catalytic properties and maximized utilization.Atomic layer deposition(ALD)is an emerging powerful technique for large‐scale synthesis of stable single atom.In this review,we summarize recent developments of single atom synthesized by ALD as well as explore future research direction and trends.展开更多
基金supported by the National Natural Science Foundation of China(21373135)Science Foundation of Ministry of Education of China(413064)and Program of Introducing Talents of Discipline to Universities,China("111 Project")(B13018)~~
文摘Contacting mode atomic force microscopy (AFM) is used to measure the In 0.35 Ga 0.65 As/GaAs epilayer grown at low temperature (460℃).Unlike the normal layer by layer growth (FvdM mode) or self organized islands growth (SK mode),samples grown under 460℃ are found to be large islands with atomic thick terraces.AFM measurements reveale near one monolayer high steps.This kind of growth is good between FvdM and SK growth modes and can be used to understand the evolution of strained epitaxy from FvdM to SK mode.
基金supported by the Natural Science and Engineering Research Council of Canada (NSERC)the Canada Research Chair Program (CRC) and the University of Western Ontario (UWO)
文摘Noble single‐atom catalysts have rapidly been attracting attention due to their unique catalytic properties and maximized utilization.Atomic layer deposition(ALD)is an emerging powerful technique for large‐scale synthesis of stable single atom.In this review,we summarize recent developments of single atom synthesized by ALD as well as explore future research direction and trends.