The analysis of the interaction of hydrogen, nitrogen (and their isotopes) with tungsten is important, since this material is a strong candidate to form the first wall of fusion reactors for both magnetic and inerti...The analysis of the interaction of hydrogen, nitrogen (and their isotopes) with tungsten is important, since this material is a strong candidate to form the first wall of fusion reactors for both magnetic and inertial confinement, and these atoms have a very sensitive (desired and unwanted) interaction with it. For this purpose, we study the effects and electronic state densities of atomic hydrogen and nitrogen in pure tungsten, in order to analyze some important properties such as the density of states of the system. Focusing on this application, this work is a preliminary study of the behavior of atoms of hydrogen and nitrogen, on a surface of tungsten on the three sites of the cell: top, hollow and bridge. We use a program simulation based on the DFT (density functional theory) implemented in the Open-Source Code Quantum Espresso, in order to obtain the adsorption energy and the density of states of the systems.展开更多
Interest in thorium stems mainly from the fact that it is expected to have a substantial increase in uranium prices. So, advanced fuel cycles which increase the reserves of nuclear materials are interesting, particula...Interest in thorium stems mainly from the fact that it is expected to have a substantial increase in uranium prices. So, advanced fuel cycles which increase the reserves of nuclear materials are interesting, particularly, the use of thorium is to produce the fissile isotope ^233U. Thorium is three to five times more abundant than uranium in the earth's crust. Additionally, thoria produces less radiotoxicity than the UO2, because it produces fewer amounts of actinides. ThO2 has higher corrosion resistance, besides being chemically stable, and the burning of Pu in a reactor based in thorium also decreases the inventories of Pu from the current fuel cycles. There are some ongoing projects in the world, taking into consideration the proposed goals for Generation IV reactors, namely: sustainability, economics, safety and reliability, proliferation resistance and physical protection. Some developments on the use of thorium in reactors are underway, with the support of the IAEA (International Atomic Energy Agency) and some govern like molten salt reactor. In this paper, we discuss the future importance of thorium, particularly for Brazil, which has large mineral reserves of this strategic element, the characteristics of the molten salt reactor and the experience of the IPEN (Instituto de Pesquisas Energ6ticas e Nucleares) in the purification of thorium compounds.展开更多
Korea imports about 97% of its energy resources as its available energy resources are extremely limited. Thus, the role of nuclear power in electricity generation is expected to become more important in future years. ...Korea imports about 97% of its energy resources as its available energy resources are extremely limited. Thus, the role of nuclear power in electricity generation is expected to become more important in future years. A fast reactor system is one of the most promising options for electricity generation with an efficient utilization of uranium resources and a reduction of radioactive wastes. Based on the experiences gained during the development of the conceptual designs for KALIMER (Korea advanced liquid metal reactor), the KAERI (Korea Atomic Energy Research Institute) is currently developing advanced SFR (sodium cooled fast reactor) design concepts that can better meet the Gen IV (Generation IV) technology goals. The long-term advanced SFR development plan will be carried out toward the construction of an advanced SFR demonstration plant by 2028. Advanced concept design studies and the development of the advanced SFR technologies necessary for its commercialization and basic key technologies carried out by KAERI are included in this paper.展开更多
Microscopic features of graphene segregated on Ni films prior to chemical transfer--including atomic structures of monolayers and bilayers, Moire patterns due to non-AB stacking, as well as wrinkles and ripples caused...Microscopic features of graphene segregated on Ni films prior to chemical transfer--including atomic structures of monolayers and bilayers, Moire patterns due to non-AB stacking, as well as wrinkles and ripples caused by strain effects-have been characterized in detail by high-resolution scanning tunneling microscopy (STM). We found that the stacking geometry of the bilayer graphene usually deviates from the traditional Bernal stacking (or so-called AB stacking), resulting in the formation of a variety of Moir6 patterns. The relative rotations inside the bilayer were then qualitatively deduced from the relationship between Moir6 patterns and carbon lattices. Moreover, we found that typical defects such as wrinkles and ripples tend to evolve around multi-step boundaries of Ni, thus reflecting strong perturbations from substrate corrugations. These investigations of the morphology and the mechanism of formation of wrinkles and ripples are fundamental topics in graphene research. This work is expected to contribute to the exploration of electronic and transport properties of wrinkles and ripples.展开更多
文摘The analysis of the interaction of hydrogen, nitrogen (and their isotopes) with tungsten is important, since this material is a strong candidate to form the first wall of fusion reactors for both magnetic and inertial confinement, and these atoms have a very sensitive (desired and unwanted) interaction with it. For this purpose, we study the effects and electronic state densities of atomic hydrogen and nitrogen in pure tungsten, in order to analyze some important properties such as the density of states of the system. Focusing on this application, this work is a preliminary study of the behavior of atoms of hydrogen and nitrogen, on a surface of tungsten on the three sites of the cell: top, hollow and bridge. We use a program simulation based on the DFT (density functional theory) implemented in the Open-Source Code Quantum Espresso, in order to obtain the adsorption energy and the density of states of the systems.
文摘Interest in thorium stems mainly from the fact that it is expected to have a substantial increase in uranium prices. So, advanced fuel cycles which increase the reserves of nuclear materials are interesting, particularly, the use of thorium is to produce the fissile isotope ^233U. Thorium is three to five times more abundant than uranium in the earth's crust. Additionally, thoria produces less radiotoxicity than the UO2, because it produces fewer amounts of actinides. ThO2 has higher corrosion resistance, besides being chemically stable, and the burning of Pu in a reactor based in thorium also decreases the inventories of Pu from the current fuel cycles. There are some ongoing projects in the world, taking into consideration the proposed goals for Generation IV reactors, namely: sustainability, economics, safety and reliability, proliferation resistance and physical protection. Some developments on the use of thorium in reactors are underway, with the support of the IAEA (International Atomic Energy Agency) and some govern like molten salt reactor. In this paper, we discuss the future importance of thorium, particularly for Brazil, which has large mineral reserves of this strategic element, the characteristics of the molten salt reactor and the experience of the IPEN (Instituto de Pesquisas Energ6ticas e Nucleares) in the purification of thorium compounds.
文摘Korea imports about 97% of its energy resources as its available energy resources are extremely limited. Thus, the role of nuclear power in electricity generation is expected to become more important in future years. A fast reactor system is one of the most promising options for electricity generation with an efficient utilization of uranium resources and a reduction of radioactive wastes. Based on the experiences gained during the development of the conceptual designs for KALIMER (Korea advanced liquid metal reactor), the KAERI (Korea Atomic Energy Research Institute) is currently developing advanced SFR (sodium cooled fast reactor) design concepts that can better meet the Gen IV (Generation IV) technology goals. The long-term advanced SFR development plan will be carried out toward the construction of an advanced SFR demonstration plant by 2028. Advanced concept design studies and the development of the advanced SFR technologies necessary for its commercialization and basic key technologies carried out by KAERI are included in this paper.
基金Acknowledgements This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 20973013, 51072004, 50821061, 20833001, 21073003, 20973006, and 50802003) and the Ministry of Science and Technology of China (Grant Nos. 2007CB936203, 2011CB921903, and 2009CB929403). Ruiqi Zhao also thanks the Doctoral Foundation of Henan Polytechnic University (Grant No. B2009-90).
文摘Microscopic features of graphene segregated on Ni films prior to chemical transfer--including atomic structures of monolayers and bilayers, Moire patterns due to non-AB stacking, as well as wrinkles and ripples caused by strain effects-have been characterized in detail by high-resolution scanning tunneling microscopy (STM). We found that the stacking geometry of the bilayer graphene usually deviates from the traditional Bernal stacking (or so-called AB stacking), resulting in the formation of a variety of Moir6 patterns. The relative rotations inside the bilayer were then qualitatively deduced from the relationship between Moir6 patterns and carbon lattices. Moreover, we found that typical defects such as wrinkles and ripples tend to evolve around multi-step boundaries of Ni, thus reflecting strong perturbations from substrate corrugations. These investigations of the morphology and the mechanism of formation of wrinkles and ripples are fundamental topics in graphene research. This work is expected to contribute to the exploration of electronic and transport properties of wrinkles and ripples.