期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Chalcogen heteroatoms doped nickel-nitrogen-carbon single-atom catalysts with asymmetric coordination for efficient electrochemical CO_(2) reduction
1
作者 Jialin Wang Kaini Zhang +5 位作者 Ta Thi Thuy Ng Yiqing Wang Yuchuan Shi Daixing Wei Chung-Li Dong Shaohua Shen 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第9期54-65,共12页
The electronic configuration of central metal atoms in single-atom catalysts(SACs)is pivotal in electrochemical CO_(2) reduction reaction(eCO_(2)RR).Herein,chalcogen heteroatoms(e.g.,S,Se,and Te)were incorporated into... The electronic configuration of central metal atoms in single-atom catalysts(SACs)is pivotal in electrochemical CO_(2) reduction reaction(eCO_(2)RR).Herein,chalcogen heteroatoms(e.g.,S,Se,and Te)were incorporated into the symmetric nickel-nitrogen-carbon(Ni-N_(4)-C)configuration to obtain Ni-X-N_(3)-C(X:S,Se,and Te)SACs with asymmetric coordination presented for central Ni atoms.Among these obtained Ni-X-N_(3)-C(X:S,Se,and Te)SACs,Ni-Se-N_(3)-C exhibited superior eCO_(2)RR activity,with CO selectivity reaching~98% at-0.70 V versus reversible hydrogen electrode(RHE).The Zn-CO_(2) battery integrated with Ni-Se-N_(3)-C as cathode and Zn foil as anode achieved a peak power density of 1.82 mW cm^(-2) and maintained remarkable rechargeable stability over 20 h.In-situ spectral investigations and theoretical calculations demonstrated that the chalcogen heteroatoms doped into the Ni-N_(4)-C configuration would break coordination symmetry and trigger charge redistribution,and then regulate the intermediate behaviors and thermodynamic reaction pathways for eCO_(2)RR.Especially,for Ni-Se-N_(3)-C,the introduced Se atoms could significantly raise the d-band center of central Ni atoms and thus remarkably lower the energy barrier for the rate-determining step of ^(*)COOH formation,contributing to the promising eCO_(2)RR performance for high selectivity CO production by competing with hydrogen evolution reaction. 展开更多
关键词 Electrochemical CO_(2) reduction reaction Chalcogen heteroatoms Single-atom catalysts Asymmetric coordination CO production
下载PDF
Transition‐metal‐atom‐pairs deposited on g‐CN monolayer for nitrogen reduction reaction:Density functional theory calculations 被引量:3
2
作者 Bin Huang Yifan Wu +3 位作者 Bibo Chen Yong Qian Naigen Zhou Neng Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第7期1160-1167,共8页
The development of highly active DFT catalysts for an electrocatalytic N_(2)reduction reaction(NRR)under mild conditions is a difficult challenge.In this study,a series of atom‐pair catalysts(APCs)for an NRR were fab... The development of highly active DFT catalysts for an electrocatalytic N_(2)reduction reaction(NRR)under mild conditions is a difficult challenge.In this study,a series of atom‐pair catalysts(APCs)for an NRR were fabricated using transition‐metal(TM)atoms(TM=Sc−Zn)doped into g‐CN monolayers.The electrochemical mechanism of APCs for an NRR has been reported by well‐defined density functional theory calculations.The calculated limiting potentials were−0.47 and−0.78 V for the Fe_(2)@CN and Co_(2)@CN catalysts,respectively.Owing to its high suppression of hydrogen evolution reactions,Co_(2)@CN is a superior electrocatalytic material for a N_(2)fixation.Stable Fe_(2)@CN may be a strongly attractive material for an NRR with a relatively low overpotential after an improvement in the selectivity.The two‐way charge transfer affirmed the donation‐acceptance procedure between N_(2)and Fe_(2)@CN or Co_(2)@CN,which play a crucial role in the activation of inert N≡N bonds.This study provides an in‐depth investigation into atom‐pair catalysts and will open up new avenues for highly efficient g‐CN‐based nanostructures for an NRR. 展开更多
关键词 Atom‐pair catalysts Graphitic carbon nitride monolayers Nitrogen reduction reaction Two‐dimensional materials Density functional theory calculations
下载PDF
Orbital symmetry matching:Achieving superior nitrogen reduction reaction over single-atom catalysts anchored on Mxene substrates 被引量:1
3
作者 Jiale Qu Jiewen Xiao +3 位作者 Hetian Chen Xiaopeng Liu Tianshuai Wang Qianfan Zhang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第2期288-296,共9页
The nitrogen reduction reaction(NRR)under ambient conditions is still challenging due to the inertness of N2.Herein,we report a series of superior NRR catalysts identified by examining Ti2NO2 MXenes embedded with 28 d... The nitrogen reduction reaction(NRR)under ambient conditions is still challenging due to the inertness of N2.Herein,we report a series of superior NRR catalysts identified by examining Ti2NO2 MXenes embedded with 28 different single-atom catalysts using first-principles calculations.The stability of this system was first verified using formation energies,and it is discovered that N2 can be effectively adsorbed due to the synergistic effect between single atom catalysis and the Ti atoms.Examination of the electronic structure demonstrated that this design satisfies orbital symmetry matching where“acceptor-donor”interaction scenario can be realized.A new“enzymatic-distal”reaction mechanism that is a mixture of the enzymatic and distal pathways was also discovered.Among all of the candidates,Ni anchored on MXene system achieves an onset potential as low as–0.13 V,which to the best of our knowledge is the lowest onset potential value reported to date.This work elucidates the significance of orbital symmetry matching and provides theoretical guidance for future studies. 展开更多
关键词 Orbital symmetry matching Single atom catalysis Nitrogen reduction reaction MXene substrate Potential determining step
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部