In our previous theoretical studies [Meng-Tao Sun, Yong-Qing Lee, and Feng-Cai Ma, Chem. Phys.Left. 371 (2003) 342], we have reported the quantum interference on collision-induced rotational energy transfer on CO (...In our previous theoretical studies [Meng-Tao Sun, Yong-Qing Lee, and Feng-Cai Ma, Chem. Phys.Left. 371 (2003) 342], we have reported the quantum interference on collision-induced rotational energy transfer on CO (A ^1 Π,v = 3) with inert gases, which originates from the difference between the two A-related collision potential energy surfaces. The interference angle, which measures the degree of coherence, is presented in this paper. Based on the time-dependent first order Born approximation, taking into account the anisotropic Lennard-Jones interaction potentials, the relation of the interference angle with the factors, including experimental temperature, partner, and rotational quantum number, are obtained. The changing tendencies with them are discussed. This theoretical model is important to understanding and performing this kind of experiment.展开更多
The cubic-quintic nonlinear Schroedinger equation (CQNLS) plays important parts in the optical fiber and the nuclear hydrodynamics. By using the homogeneous balance principle, the bell type, kink type, algebraic sol...The cubic-quintic nonlinear Schroedinger equation (CQNLS) plays important parts in the optical fiber and the nuclear hydrodynamics. By using the homogeneous balance principle, the bell type, kink type, algebraic solitary waves, and trigonometric traveling waves for the cubic-quintic nonlinear Schroedinger equation with variable coefficients (vCQNLS) are derived with the aid of a set of subsidiary high-order ordinary differential equations (sub-equations for short). The method used in this paper might help one to derive the exact solutions for the other high-order nonlinear evolution equations, and shows the new application of the homogeneous balance principle.展开更多
Using the recently developed finite-basis-set method with B splines, excited states of H atoms in a magnetic field have been calculated. Energy levels are presented for the ten excited states, 2so, 3d'0, 3po, 3p-1, 3...Using the recently developed finite-basis-set method with B splines, excited states of H atoms in a magnetic field have been calculated. Energy levels are presented for the ten excited states, 2so, 3d'0, 3po, 3p-1, 3d_1, 4d-1, 3d-2, 4d-2, 4f-2 , and 5f-2 as a function of magnetic field strengths with a range from zero up to 2.35 × 10^6 T. The obtained results are compared with available high accuracy theoretical data reported in the literature and found to be in excellent agreement. The comparison also shows that the current method can produce energy levels with an accuracy higher than the existing high accuracy method [Phys. Rev. A 54 (1996) 287]. Here high accuracy energy levels are for the first time reported for the 3d'0, 4d-1, 4d-2, 4f-2, and 5f-2 states.展开更多
An anharmonic oscillator algebra model is used to study the collinear collisions of two diatomic molecules. The transition probability for vibration-vibration energy transfer is presented. For an application of the me...An anharmonic oscillator algebra model is used to study the collinear collisions of two diatomic molecules. The transition probability for vibration-vibration energy transfer is presented. For an application of the method, we talk about the collision of N2+CO, N2+O2, and N2+N2. Through long time averaging, the transition probability changes to the function of total energy of the system. Comparing the results with the quantum results, we can see that the dynamical Lie algebraic method is useful for describing the anharmonie diatomic molecular collision.展开更多
We present the extended hydrogen atom and monopole-hydrogen atom theory through generalizing the usual hydrogen atom model and with a monopole model respectively, in which Y (sl(2) ) algebras are realized. We derive t...We present the extended hydrogen atom and monopole-hydrogen atom theory through generalizing the usual hydrogen atom model and with a monopole model respectively, in which Y (sl(2) ) algebras are realized. We derive the Hamiltonians of the two models based on the Y(sl(2) ) and the generalized Pauli equation. The energy spectra of the systems are also given in terms of Yangian algebra and quantum mechanics.展开更多
We propose a scheme to create an effective magnetic field, which can be perceived by cold neutral atoms in a two-dimensional optical lattice, with a laser field with a space-dependent phase and a conventional laser fi...We propose a scheme to create an effective magnetic field, which can be perceived by cold neutral atoms in a two-dimensional optical lattice, with a laser field with a space-dependent phase and a conventional laser field acting on A-type three-level atoms. When the dimensionless parameter a, being the ratio of flux through a lattice cell to one flux quantum, is rational, the energy spectrum shows a fractal band structure, which is so-called Hofstadter's butterfly.展开更多
Investigations on thermal evolution of pairing-phase transition and shape-phase transition in light nuclei are made as a function of pair gap, deformation, temperature and angular momentum using a finite temperature s...Investigations on thermal evolution of pairing-phase transition and shape-phase transition in light nuclei are made as a function of pair gap, deformation, temperature and angular momentum using a finite temperature statistical approach with main emphasis to fluctuations. The occurrence of a peak structure in the specific heat predicted as signals of the pairing-phase and shape-phase transitions are reviewed and it is found that they are not actually true phase transitions and it is only an artifact of the mean field models. Since quantal number and spin fluctuations and statistical fluctuations in pair gap, deformation degrees of freedom and energy when incorporated, it wash out the pairing-phase transition and smooth out the shape-phase transition. Phase transitions due to collapse of pair gap and deformation is discussed and a clear picture of pairing-phase transition in light nuclei is presented in which pairing transition is reconciled.展开更多
The cationic group distribution along the polymeric backbones of anion exchange membranes(AEMs)has significant influence on their microscopic morphology and anion conductivity.To develop high-performance AEMs for vana...The cationic group distribution along the polymeric backbones of anion exchange membranes(AEMs)has significant influence on their microscopic morphology and anion conductivity.To develop high-performance AEMs for vanadium redox flow batteries(VRFBs),a series of poly(fluorenyl ether)samples bearing di-and tri-quaternary ammonium side chains with similar ion exchange capacities(IECs)were synthesized by grafting cationic alkyl chains with tertiary amine-containing poly(fluorenyl ether)precursors.The experimental results indicate that the introduction of the multi-cationic side chains facilitates the formation of micro-phase-separated morphologies and enhances anion conductivity.Moreover,the number of spacer atoms between the quaternary ammonium groups on the side chains affects the water uptake of the membranes,thus complicating the relationship between the density of cationic group distribution and anion conductivity.The poly(fluorenyl ether)s with dicationic side chains and six spacing atoms(DQA-PFE-C6)showed the highest anion conductivity.A VRFB assembled with DQA-PFE-C6 exhibited a maximum power density of 239.80 mW cm^−2 at 250 mA cm^−2,which is significantly higher than a VRFB assembled with Nafion 212.Therefore,side chain engineering is an effective chemical approach to enhance the properties of AEMs for VRFB applications.展开更多
We develop a model for the effect of thermal annealing on forming In--N dusters in GalnNP according to thermodynamics. The average energy variation for forming an In--N bond in the model is estimated according to the ...We develop a model for the effect of thermal annealing on forming In--N dusters in GalnNP according to thermodynamics. The average energy variation for forming an In--N bond in the model is estimated according to the theoretical calculation. Using the model, the added number of In--N bonds per mol of InGaNP, the added number of nearest-neighbor In atoms per N atom and the average number of nearest-neighbor In atoms per N atom after annealing are calculated. The different function of In--N clusters in InGaNP and InGaN is also discussed, which is due to the different environments around the In--N clusters.展开更多
By using the coupled duster method and the numerical density matrix renormalization group method, we investigate the properties of the quantum plateau state in an alternating Heisenberg spin chain. In the absence of a...By using the coupled duster method and the numerical density matrix renormalization group method, we investigate the properties of the quantum plateau state in an alternating Heisenberg spin chain. In the absence of a magnetic field, the results obtained from the coupled cluster method and density matrix renormalization group method both show that the ground state of the aiternating chain is a gapped dimerized state when the parameter a exceeds a critical point ac. The value of the critical points can be determined precisely by a detailed investigation of the behavior of the spin gap. The system therefore possesses an m = 0 plateau state in the presence of a magnetic field When a 〉 ac. In addition to the m = 0 plateau state, the results of density matrix renormaiization group indicate that there is an m = 1/4 plateau state that occurs between two critical fields in the alternating chain if a 〉 1. The mechanism for the m = 1/4 plateau state and the critical behavior of the magnetization as one approaches this plateau state are also discussed.展开更多
基金The project supported by National Natural Science Foundation of China under Grant No. 10374040
文摘In our previous theoretical studies [Meng-Tao Sun, Yong-Qing Lee, and Feng-Cai Ma, Chem. Phys.Left. 371 (2003) 342], we have reported the quantum interference on collision-induced rotational energy transfer on CO (A ^1 Π,v = 3) with inert gases, which originates from the difference between the two A-related collision potential energy surfaces. The interference angle, which measures the degree of coherence, is presented in this paper. Based on the time-dependent first order Born approximation, taking into account the anisotropic Lennard-Jones interaction potentials, the relation of the interference angle with the factors, including experimental temperature, partner, and rotational quantum number, are obtained. The changing tendencies with them are discussed. This theoretical model is important to understanding and performing this kind of experiment.
基金The project supported in part by Natural Science Foundation of Henan Province of China under Grant No. 2006110002 and the Science Foundation of Henan University of Science and Technology under Grant No. 2004ZD002
文摘The cubic-quintic nonlinear Schroedinger equation (CQNLS) plays important parts in the optical fiber and the nuclear hydrodynamics. By using the homogeneous balance principle, the bell type, kink type, algebraic solitary waves, and trigonometric traveling waves for the cubic-quintic nonlinear Schroedinger equation with variable coefficients (vCQNLS) are derived with the aid of a set of subsidiary high-order ordinary differential equations (sub-equations for short). The method used in this paper might help one to derive the exact solutions for the other high-order nonlinear evolution equations, and shows the new application of the homogeneous balance principle.
文摘Using the recently developed finite-basis-set method with B splines, excited states of H atoms in a magnetic field have been calculated. Energy levels are presented for the ten excited states, 2so, 3d'0, 3po, 3p-1, 3d_1, 4d-1, 3d-2, 4d-2, 4f-2 , and 5f-2 as a function of magnetic field strengths with a range from zero up to 2.35 × 10^6 T. The obtained results are compared with available high accuracy theoretical data reported in the literature and found to be in excellent agreement. The comparison also shows that the current method can produce energy levels with an accuracy higher than the existing high accuracy method [Phys. Rev. A 54 (1996) 287]. Here high accuracy energy levels are for the first time reported for the 3d'0, 4d-1, 4d-2, 4f-2, and 5f-2 states.
基金Supported by the National Science Foundation of China under Grant No. 20173013Partial Financial Supports from the Science Foundation of Shandong Province under Grant No. Y2008C102the Foundation of Taishan Meidical College under Grant No. TSB016
文摘An anharmonic oscillator algebra model is used to study the collinear collisions of two diatomic molecules. The transition probability for vibration-vibration energy transfer is presented. For an application of the method, we talk about the collision of N2+CO, N2+O2, and N2+N2. Through long time averaging, the transition probability changes to the function of total energy of the system. Comparing the results with the quantum results, we can see that the dynamical Lie algebraic method is useful for describing the anharmonie diatomic molecular collision.
文摘We present the extended hydrogen atom and monopole-hydrogen atom theory through generalizing the usual hydrogen atom model and with a monopole model respectively, in which Y (sl(2) ) algebras are realized. We derive the Hamiltonians of the two models based on the Y(sl(2) ) and the generalized Pauli equation. The energy spectra of the systems are also given in terms of Yangian algebra and quantum mechanics.
基金supported by the Teaching and Research Foundation for the Outstanding Young Faculty of Southeast University and National Natural Science Foundation of China under Grant No.10571091
文摘We propose a scheme to create an effective magnetic field, which can be perceived by cold neutral atoms in a two-dimensional optical lattice, with a laser field with a space-dependent phase and a conventional laser field acting on A-type three-level atoms. When the dimensionless parameter a, being the ratio of flux through a lattice cell to one flux quantum, is rational, the energy spectrum shows a fractal band structure, which is so-called Hofstadter's butterfly.
基金Supported by a Project(No.F.No.36-169/2008(SR)) sanctioned by University Grants Commission,New Delhi,India
文摘Investigations on thermal evolution of pairing-phase transition and shape-phase transition in light nuclei are made as a function of pair gap, deformation, temperature and angular momentum using a finite temperature statistical approach with main emphasis to fluctuations. The occurrence of a peak structure in the specific heat predicted as signals of the pairing-phase and shape-phase transitions are reviewed and it is found that they are not actually true phase transitions and it is only an artifact of the mean field models. Since quantal number and spin fluctuations and statistical fluctuations in pair gap, deformation degrees of freedom and energy when incorporated, it wash out the pairing-phase transition and smooth out the shape-phase transition. Phase transitions due to collapse of pair gap and deformation is discussed and a clear picture of pairing-phase transition in light nuclei is presented in which pairing transition is reconciled.
基金the National Natural Science Foundation of China(51873037 and 51503038)。
文摘The cationic group distribution along the polymeric backbones of anion exchange membranes(AEMs)has significant influence on their microscopic morphology and anion conductivity.To develop high-performance AEMs for vanadium redox flow batteries(VRFBs),a series of poly(fluorenyl ether)samples bearing di-and tri-quaternary ammonium side chains with similar ion exchange capacities(IECs)were synthesized by grafting cationic alkyl chains with tertiary amine-containing poly(fluorenyl ether)precursors.The experimental results indicate that the introduction of the multi-cationic side chains facilitates the formation of micro-phase-separated morphologies and enhances anion conductivity.Moreover,the number of spacer atoms between the quaternary ammonium groups on the side chains affects the water uptake of the membranes,thus complicating the relationship between the density of cationic group distribution and anion conductivity.The poly(fluorenyl ether)s with dicationic side chains and six spacing atoms(DQA-PFE-C6)showed the highest anion conductivity.A VRFB assembled with DQA-PFE-C6 exhibited a maximum power density of 239.80 mW cm^−2 at 250 mA cm^−2,which is significantly higher than a VRFB assembled with Nafion 212.Therefore,side chain engineering is an effective chemical approach to enhance the properties of AEMs for VRFB applications.
基金supported by the Special Funds for the Major State Basic Research Project (Grant No.2011CB301900)the National Natural Science Foundation of China (Grant Nos.60990311,60820106003,60906025,60936004 and 61177078)+1 种基金the Natural Science Foundation of Jiangsu Province (Grant Nos.BK2008019,BK2010385,BK2009255 and BK2010178)the Research Funds from NJU-Yangzhou Institute of Opto-electronics
文摘We develop a model for the effect of thermal annealing on forming In--N dusters in GalnNP according to thermodynamics. The average energy variation for forming an In--N bond in the model is estimated according to the theoretical calculation. Using the model, the added number of In--N bonds per mol of InGaNP, the added number of nearest-neighbor In atoms per N atom and the average number of nearest-neighbor In atoms per N atom after annealing are calculated. The different function of In--N clusters in InGaNP and InGaN is also discussed, which is due to the different environments around the In--N clusters.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10804053 and 61203147the Natural Science Foundation of Jiangsu Province under Grant No.BK20131428+2 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions under Grant No.13KJD140003the Scientific Research Foundation of Nanjing University of Posts and Telecommunications under Grant No.NY211008Qing Lan Project of Jiangsu Province
文摘By using the coupled duster method and the numerical density matrix renormalization group method, we investigate the properties of the quantum plateau state in an alternating Heisenberg spin chain. In the absence of a magnetic field, the results obtained from the coupled cluster method and density matrix renormalization group method both show that the ground state of the aiternating chain is a gapped dimerized state when the parameter a exceeds a critical point ac. The value of the critical points can be determined precisely by a detailed investigation of the behavior of the spin gap. The system therefore possesses an m = 0 plateau state in the presence of a magnetic field When a 〉 ac. In addition to the m = 0 plateau state, the results of density matrix renormaiization group indicate that there is an m = 1/4 plateau state that occurs between two critical fields in the alternating chain if a 〉 1. The mechanism for the m = 1/4 plateau state and the critical behavior of the magnetization as one approaches this plateau state are also discussed.