This review begins with a brief commentary on the diversity of placentation mechanisms, and then goes on to examine the extensive alterations which occur in the plasma membrane of uterine epithelial cells during early...This review begins with a brief commentary on the diversity of placentation mechanisms, and then goes on to examine the extensive alterations which occur in the plasma membrane of uterine epithelial cells during early pregnancy across species. Ultrastructural, biochemical and more general morphological data reveal that strikingly common phenomena occur in this plasma membrane during early pregnancy despite the diversity of placental types-from epitheliochorial to hemochorial, which ultimately form in different species. To encapsulate the concept that common morphological and molecular alterations occur across species, that they are found basolaterally as well as apically, and that moreover they are an ongoing process during much of early pregnancy, not just an event at the time attachment, the term 'plasma membrane transformation' is suggested which also emphasises that alterations in this plasma membrane during early pregnancy are key to uterine receptivity.展开更多
We propose schemes to prepare n-atom Greenberger-Horn-Zeilinger (GHZ) state via two-sided cavities interacting with single-photon pulses, and achieve quantum state transfer (QST) from one atom to another atom. Ent...We propose schemes to prepare n-atom Greenberger-Horn-Zeilinger (GHZ) state via two-sided cavities interacting with single-photon pulses, and achieve quantum state transfer (QST) from one atom to another atom. Entanglement particle pair and the control of coupling between qu bits are of no need in the QST process. Some practical quantum noises only decrease the success probabilities of the schemes but have no influence on the fidelity of prepared state. In addition, the success probabilities of our schemes are close to unity in the ideal case.展开更多
Using the "pseudo-invariant eigen-operator" method we find the energy-gap of the Jaynes-Cummings Hamiltonian model of an atom-cavity system. This model takes the atomic centre-of-mass motion into account. The supers...Using the "pseudo-invariant eigen-operator" method we find the energy-gap of the Jaynes-Cummings Hamiltonian model of an atom-cavity system. This model takes the atomic centre-of-mass motion into account. The supersymmetric structure is involved in the Hamiltonian of an atom-cavity system. By selecting suitable supersymmettic generators and using supersymmetrie transformation the Hamiltonian is diagonalized and energy eigenvectors are obtained.展开更多
Considering time-dependence of both interactions and external potential,we analytically study the collisional behaviors of two bright solitons in Bose-Einstein condensates by using Darboux transformation.It is found t...Considering time-dependence of both interactions and external potential,we analytically study the collisional behaviors of two bright solitons in Bose-Einstein condensates by using Darboux transformation.It is found that for a closed external potential,the soliton-soliton distance is decreased with nonlinearly increased interactions,while the amplitude of each soliton increases and its width decreases.For linearly increased interactions but nonlinearly decreased external potential,especially,the atom transfer between two solitons is observed,different from previous theory of no atom transfer in solitons collision in a fixed external potential.In addition,it is shown that the collisional type,such as head-on,"chase",or collision period between two solitons,can be controlled by tuning both interactions and external potential.The predicted phenomena can be observed under the condition of the current experiments and open possibilities for future application in atoms transport.展开更多
Two new conjugated copolymers, PBDT-T6-TTF and PBDT-T12-TTF, were derived from a novel 4-fluorobenzoyl thienothi- ophene (TTF). In addition, two types of benzodithiophene (BDT) units with 2,3-dihexylthienyl (T6)...Two new conjugated copolymers, PBDT-T6-TTF and PBDT-T12-TTF, were derived from a novel 4-fluorobenzoyl thienothi- ophene (TTF). In addition, two types of benzodithiophene (BDT) units with 2,3-dihexylthienyl (T6) and 2,3-didodecylthienyl (T12) substituents, respectively, were successfully synthesized. The effect of the dual two-dimensional (2D) substitutions of the building blocks upon the optoelectronic properties of the polymers was investigated. Generally, the two polymers exhibited good solubility and broad absorption, showing similar optical band gaps of ~1.53 eV. However, PBDT-T6-TTF with its shorter alkyl chain length possessed a larger extinction coefficient in thin solid film. The highest occupied molecular orbital (HOMO) level of PBDT-T6-TTF was located at -5.38 eV while that of PBDT-T12-TTF was at -5.51 eV. In space charge-limited- current (SCLC) measurement, PBDT-T6-TTF and PBDT-T12-TTF displayed respective hole mobilities of 3.0~10-~ and 1.6x10 5 cm2 V-1 s-l. In polymer solar cells, PBDT-T6-TTF and PBDT-T12-TTF showed respective power conversion efficiencies (PCEs) of 2.86% and 1.67%. When 1,8-diiodooctane (DIO) was used as the solvent additive, the PCE of PBDT-T6-TTF was remarkably elevated to 4.85%, but the use of DIO for the PBDT-T12-TTF-blend film resulted in a lower PCE of 0.91%. Atomic force microscopy (AFM) indicated that the superior efficiency of PBDT-T6-TTF with 3% DIO (v/v) should be related to the better continuous phase separation of the blend film. Nevertheless, the morphology of the PBDT-T12-TTF deteriorated when the 3% DIO (v/v) was added. Our results suggest that the alkyl-chain length on the 2D BDT units play an important role in determining the optoelectronic properties of dual 2D BDT-TT-based polymers.展开更多
The properties of Al-doped Zn O(AZO) play an important role in the photovoltaic performance of inverted polymer solar cells(PSCs), which is used as electron transport and hole blocking buffer layers. In this work, we ...The properties of Al-doped Zn O(AZO) play an important role in the photovoltaic performance of inverted polymer solar cells(PSCs), which is used as electron transport and hole blocking buffer layers. In this work, we study the effects of Al-doping level in AZO on device performance in detail. Results indicate that the device performance intensely depends on the Al-doping level. The AZO thin films with Al-doping atomic percentage of 1.0% possess the best conductivity. The resulting solar cells show the enhanced short current density and the fill factor(FF) simultaneously, and the power conversion efficiency(PCE) is improved by 74%, which are attributed to the reduced carrier recombination and the optimized charge transport and extraction between AZO and the active layer.展开更多
文摘This review begins with a brief commentary on the diversity of placentation mechanisms, and then goes on to examine the extensive alterations which occur in the plasma membrane of uterine epithelial cells during early pregnancy across species. Ultrastructural, biochemical and more general morphological data reveal that strikingly common phenomena occur in this plasma membrane during early pregnancy despite the diversity of placental types-from epitheliochorial to hemochorial, which ultimately form in different species. To encapsulate the concept that common morphological and molecular alterations occur across species, that they are found basolaterally as well as apically, and that moreover they are an ongoing process during much of early pregnancy, not just an event at the time attachment, the term 'plasma membrane transformation' is suggested which also emphasises that alterations in this plasma membrane during early pregnancy are key to uterine receptivity.
基金supported by National Natural Science Foundation of China under Grant No.10574022the Natural Science Foundation of Fujian Province of China under Grant Nos.A0410016 and 2006J0230Funds of Education Committee of Fujian Province under Grant No.JB05334
文摘We propose schemes to prepare n-atom Greenberger-Horn-Zeilinger (GHZ) state via two-sided cavities interacting with single-photon pulses, and achieve quantum state transfer (QST) from one atom to another atom. Entanglement particle pair and the control of coupling between qu bits are of no need in the QST process. Some practical quantum noises only decrease the success probabilities of the schemes but have no influence on the fidelity of prepared state. In addition, the success probabilities of our schemes are close to unity in the ideal case.
基金The project supported by the President Foundation of the Chinese Academy of Sciences and the research fund provided by Graduate School of University of Science and Technology of China
文摘Using the "pseudo-invariant eigen-operator" method we find the energy-gap of the Jaynes-Cummings Hamiltonian model of an atom-cavity system. This model takes the atomic centre-of-mass motion into account. The supersymmetric structure is involved in the Hamiltonian of an atom-cavity system. By selecting suitable supersymmettic generators and using supersymmetrie transformation the Hamiltonian is diagonalized and energy eigenvectors are obtained.
基金Supported by National Natural Science Foundation of China under Grant Nos.51032002 and 11074212Foundation for the Author of National Excellent Doctoral Dissertation of China under Grant No.200726+1 种基金the key Project of the National HighTechnology Research and Development Program ("863" Program) of China under Grant No.2011AA050526Hunan Provincial Innovation Foundation for Postgraduate under Grant No.CX2010B254
文摘Considering time-dependence of both interactions and external potential,we analytically study the collisional behaviors of two bright solitons in Bose-Einstein condensates by using Darboux transformation.It is found that for a closed external potential,the soliton-soliton distance is decreased with nonlinearly increased interactions,while the amplitude of each soliton increases and its width decreases.For linearly increased interactions but nonlinearly decreased external potential,especially,the atom transfer between two solitons is observed,different from previous theory of no atom transfer in solitons collision in a fixed external potential.In addition,it is shown that the collisional type,such as head-on,"chase",or collision period between two solitons,can be controlled by tuning both interactions and external potential.The predicted phenomena can be observed under the condition of the current experiments and open possibilities for future application in atoms transport.
基金financially supported by the National Natural Science Foundation of China(21225418 and 51173048)the National Basic Research Program of China(2013CB834705 and 2014CB643505)GDUPS(2013)
文摘Two new conjugated copolymers, PBDT-T6-TTF and PBDT-T12-TTF, were derived from a novel 4-fluorobenzoyl thienothi- ophene (TTF). In addition, two types of benzodithiophene (BDT) units with 2,3-dihexylthienyl (T6) and 2,3-didodecylthienyl (T12) substituents, respectively, were successfully synthesized. The effect of the dual two-dimensional (2D) substitutions of the building blocks upon the optoelectronic properties of the polymers was investigated. Generally, the two polymers exhibited good solubility and broad absorption, showing similar optical band gaps of ~1.53 eV. However, PBDT-T6-TTF with its shorter alkyl chain length possessed a larger extinction coefficient in thin solid film. The highest occupied molecular orbital (HOMO) level of PBDT-T6-TTF was located at -5.38 eV while that of PBDT-T12-TTF was at -5.51 eV. In space charge-limited- current (SCLC) measurement, PBDT-T6-TTF and PBDT-T12-TTF displayed respective hole mobilities of 3.0~10-~ and 1.6x10 5 cm2 V-1 s-l. In polymer solar cells, PBDT-T6-TTF and PBDT-T12-TTF showed respective power conversion efficiencies (PCEs) of 2.86% and 1.67%. When 1,8-diiodooctane (DIO) was used as the solvent additive, the PCE of PBDT-T6-TTF was remarkably elevated to 4.85%, but the use of DIO for the PBDT-T12-TTF-blend film resulted in a lower PCE of 0.91%. Atomic force microscopy (AFM) indicated that the superior efficiency of PBDT-T6-TTF with 3% DIO (v/v) should be related to the better continuous phase separation of the blend film. Nevertheless, the morphology of the PBDT-T12-TTF deteriorated when the 3% DIO (v/v) was added. Our results suggest that the alkyl-chain length on the 2D BDT units play an important role in determining the optoelectronic properties of dual 2D BDT-TT-based polymers.
基金supported by the National Natural Science Foundation of China(No.61377031)the Scientific Research Foundation of Zhejiang Ocean University(No.Q1444)
文摘The properties of Al-doped Zn O(AZO) play an important role in the photovoltaic performance of inverted polymer solar cells(PSCs), which is used as electron transport and hole blocking buffer layers. In this work, we study the effects of Al-doping level in AZO on device performance in detail. Results indicate that the device performance intensely depends on the Al-doping level. The AZO thin films with Al-doping atomic percentage of 1.0% possess the best conductivity. The resulting solar cells show the enhanced short current density and the fill factor(FF) simultaneously, and the power conversion efficiency(PCE) is improved by 74%, which are attributed to the reduced carrier recombination and the optimized charge transport and extraction between AZO and the active layer.