The first-principle calculations are performed to investigate the structural,mechanical and electronic properties of titanium borides (Ti2B,TiB and TiB2).Those calculated lattice parameters are in good agreement wit...The first-principle calculations are performed to investigate the structural,mechanical and electronic properties of titanium borides (Ti2B,TiB and TiB2).Those calculated lattice parameters are in good agreement with the experimental data and previous theoretical values.All these borides are found to be mechanically stable at ambient pressure.Compared with parent metal Ti (120 GPa),the larger bulk modulus of these borides increase successively with the increase of the boron content in three borides,which may be due to direction bonding introduced by the boron atoms in the lattice and the strong covalent Ti-B bonds.Additionally,TiB can be regarded as a candidate of incompressible and hard material besides TiB2.Furthermore,the elastic anisotropy and Debye temperatures are also discussed by investigating the elastic constants and moduli.Electronic density of states and atomic Mulliken charges analysis show that chemical bonding in these titanium borides is a complex mixture of covalent,ionic,and metallic characters.展开更多
In recent experiments [e.g., Nature Physics 2 (2006) 332], the enhanced light deflection in an atomic ensemble due to inhomogeneous fields is demonstrated by the electromagneticaJly induced transparency (EIT) base...In recent experiments [e.g., Nature Physics 2 (2006) 332], the enhanced light deflection in an atomic ensemble due to inhomogeneous fields is demonstrated by the electromagneticaJly induced transparency (EIT) based mechanism. In this paper, we explore a different mechanism for the similar phenomenon of the enhanced light deflection. This mechanism is based on the coherent population oscillation, which leads to the hole burning in the absorption spectrum. The medium causing the deflection of probe light is an ensemble of two-level atoms manipulated by a strong controlled field on the two photon resonances. In the large detuning condition, the response of the medium to the pump field and signal field is obtained with steady state approximation. And it is found that after the probe field travels across the medium, the signal ray bends due to the spatial-dependent profile of the control beam.展开更多
By FP-LAPW calculations, the structural, elastic, Debye and Curie temperatures, electronic and magnetic properties of Co2 VAl are investigated. The results indicate that Ferromagnetic (FM) phase is more stable than ...By FP-LAPW calculations, the structural, elastic, Debye and Curie temperatures, electronic and magnetic properties of Co2 VAl are investigated. The results indicate that Ferromagnetic (FM) phase is more stable than Anti- Ferromagnetic (AFM) and Non-magnetic (NM) ones. In addition, C11-C12 〉 0, C44 〉 0, and B 〉 0 so Co2 VAl is an elastically stable material with high Debye temperature. Also, the BIG ratio exhibits a ductility behavior. The relatively high Curie temperature provides it as a favorable material for spintronic application. It's electronic and magnetic properties are studied by GGA +U approach leading to a 100% spin polarization at Fermi level.展开更多
基金Project(2010JK404) supported by the Education Committee Natural Science Foundation of Shaanxi Province,ChinaProjects(ZK0918,ZK0915) supported by the Baoji University of Arts and Sciences Key Research,China
文摘The first-principle calculations are performed to investigate the structural,mechanical and electronic properties of titanium borides (Ti2B,TiB and TiB2).Those calculated lattice parameters are in good agreement with the experimental data and previous theoretical values.All these borides are found to be mechanically stable at ambient pressure.Compared with parent metal Ti (120 GPa),the larger bulk modulus of these borides increase successively with the increase of the boron content in three borides,which may be due to direction bonding introduced by the boron atoms in the lattice and the strong covalent Ti-B bonds.Additionally,TiB can be regarded as a candidate of incompressible and hard material besides TiB2.Furthermore,the elastic anisotropy and Debye temperatures are also discussed by investigating the elastic constants and moduli.Electronic density of states and atomic Mulliken charges analysis show that chemical bonding in these titanium borides is a complex mixture of covalent,ionic,and metallic characters.
基金The project supported by the Natural Science Foundation of China under Grant Nos. 10775048, 10704023, 10775048, and 10325523the National Fundamental Research Program of China under Grant No. 2007CB925204the Scientific Research Fund of Hunan Provincial Education Department of China under Grant No. 07C579
文摘In recent experiments [e.g., Nature Physics 2 (2006) 332], the enhanced light deflection in an atomic ensemble due to inhomogeneous fields is demonstrated by the electromagneticaJly induced transparency (EIT) based mechanism. In this paper, we explore a different mechanism for the similar phenomenon of the enhanced light deflection. This mechanism is based on the coherent population oscillation, which leads to the hole burning in the absorption spectrum. The medium causing the deflection of probe light is an ensemble of two-level atoms manipulated by a strong controlled field on the two photon resonances. In the large detuning condition, the response of the medium to the pump field and signal field is obtained with steady state approximation. And it is found that after the probe field travels across the medium, the signal ray bends due to the spatial-dependent profile of the control beam.
基金Supported by the simulation of Nano Physics Lab center of Kermanshah Branch,Islamic Azad University
文摘By FP-LAPW calculations, the structural, elastic, Debye and Curie temperatures, electronic and magnetic properties of Co2 VAl are investigated. The results indicate that Ferromagnetic (FM) phase is more stable than Anti- Ferromagnetic (AFM) and Non-magnetic (NM) ones. In addition, C11-C12 〉 0, C44 〉 0, and B 〉 0 so Co2 VAl is an elastically stable material with high Debye temperature. Also, the BIG ratio exhibits a ductility behavior. The relatively high Curie temperature provides it as a favorable material for spintronic application. It's electronic and magnetic properties are studied by GGA +U approach leading to a 100% spin polarization at Fermi level.