Spherical carbonyl iron(Fe)powders were coated with magnesioferrite(MgFe2O4)insulating coating layer and then mixed with epoxy-modified silicone resin(ESR).Soft magnetic composites(SMCs)were fabricated by compaction o...Spherical carbonyl iron(Fe)powders were coated with magnesioferrite(MgFe2O4)insulating coating layer and then mixed with epoxy-modified silicone resin(ESR).Soft magnetic composites(SMCs)were fabricated by compaction of the coated powders and annealing treatment.Transmission electron microscopy(TEM),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),X-ray diffractometry(XRD)and X-ray photoelectron spectroscopy(XPS)revealed that the MgFe2O4 layer was coated on the surface of the iron powders.The magnetic properties of SMCs were determined using a vibrating sample magnetometer and an auto testing system for magnetic materials.The results showed that the SMCs prepared at 800 MPa and 550℃ exhibited a significant core loss of 167.5 W/kg at 100 kHz and 50 mT.展开更多
Aluminum matrix composites reinforced by in situ Al2O3 and Al3Zr particles are fabricated from A356-Zr(CO3)2 system via magnetochemistry reaction,and the morphologies,sizes and distributions of the in situ particles a...Aluminum matrix composites reinforced by in situ Al2O3 and Al3Zr particles are fabricated from A356-Zr(CO3)2 system via magnetochemistry reaction,and the morphologies,sizes and distributions of the in situ particles as well as the microstructures,mechanical mechanisms of the composites are investigated by XRD,SEM,TEM and in situ tensile tests.The results indicate that with the pulsed magnetic field assistance,the morphologies of the in situ particles are mainly with ball-shape,the sizes are in nanometer scale and the distributions in the matrix are uniform.The interfaces between the in situ particles and the aluminum matrix are net and no interfacial outgrowth is observed.These are due to the strong vibration induced by the applied magnetic field in the aluminum melt,which in turn,accelerates the melt reactions.The effects of the magnetic field on the above contributions are discussed in detail.展开更多
Acrylonitrile-methyl methacrylate (AN-MMA) copolymer/silica nanocomposites were synthesized by in-situ emulsion polymerization initiated by 2,2'-azobis(2-amidinopropane) dihydrochloride absorbed onto colloidal si...Acrylonitrile-methyl methacrylate (AN-MMA) copolymer/silica nanocomposites were synthesized by in-situ emulsion polymerization initiated by 2,2'-azobis(2-amidinopropane) dihydrochloride absorbed onto colloidal silica particles, and the mesoporous carbon materials were prepared through carbonization of the obtained AN-MMA copolymer/silica nanocomposites, followed by HF etching. Thermogravimetric analysis of AN-MMAcopolymer/silica nanocomposltes snoweO mat me caroon ylelCl or copolymer was slgnuy oecreaseo as Silica parucle incorporated. N2 adsorption-desorption, scan electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the structure and morphology of the mesoporous carbon materials. Both SEM and展开更多
MXene, a new type of two-dimensional layered transition metal carbide material differing from graphene, demonstrates intriguing chemical/physical properties and wide applications in recent years. Here, the preparation...MXene, a new type of two-dimensional layered transition metal carbide material differing from graphene, demonstrates intriguing chemical/physical properties and wide applications in recent years. Here, the preparation of the self-assembled MXene-gold nanoparticles (MXene@AuNPs) nanocomposites with tunable sizes is reported. The nano- composites are obtained via the self-reduction reactions of MXene material in a HAuCI4 solution at room temperature. The sizes of the Au particles can be well-controlled by reg- ulating the self-reduction reaction time. They can greatly in- fluence the catalytic behaviors of the MXene@AuNPs composites. MXene@AuNPs composites with optimized re- duction time show high catalytic performances and good cycle stability for model catalytic reactions of nRro-compounds, such as 2-nitrophenol and 4-nitrophenol. This work demon- strates a new approach for the preparation of tunable MXene- based self-assembled composites.展开更多
N-doped porous carbon materials have been prepared by a simple one-step pyrolysis of ethylenediaminetetraacetic acid (EDTA) and melamine in the presence of KOH and Co(NO3)2·6H20. The combination of the high s...N-doped porous carbon materials have been prepared by a simple one-step pyrolysis of ethylenediaminetetraacetic acid (EDTA) and melamine in the presence of KOH and Co(NO3)2·6H20. The combination of the high specific area (1,485 m2.g-l), high nitrogen content (10.8%) and suitable graphitic degree results in catalysts exhibiting high activity (with onset and half-wave potentials of 0.88 and 0.79 V vs the reversible hydrogen electrode (RHE), respectively) and four-electron selectivity for the oxygen reduction reaction (ORR) in alkaline medium---comparable to a commercial Pt/C catalyst, but far exceeding Pt/C in stability and durability. Owing to their superb ORR performance, low cost and facile preparation, the catalysts have great potential applications in fuel cells, metal-air batteries, and ORR-related electrochemical industries.展开更多
The development of ultrasmall transition-metal dichalcogenide(such as MoS_2,MoSe_2) nanostructures is an efficient strategy to increase the active edge sites and overall performance for hydrogen evolution reaction. ...The development of ultrasmall transition-metal dichalcogenide(such as MoS_2,MoSe_2) nanostructures is an efficient strategy to increase the active edge sites and overall performance for hydrogen evolution reaction. Here,we report an in-situ tearing strategy to produce the carbon nanotube supported subnanometer ternary MoSeS(denoted as CNTs@NiSe@MoSeS) for efficient hydrogen evolution. Large(18.3 ± 1.1nm in length) multilayer MoS_2 sheets grown on Ni(OH)_2 thin film are torn into subnanometer(5.2 ± 0.7 nm in length) MoSeS via a subsequent selenization progress,along with the transformation of Ni(OH)_2 thin film into small Ni Se nanoplates. The resulting nanocomposite exhibits abundant active edge sites,outstanding 10,000-cycle stability and ultrahigh activity with a low overpotential of 189 mV at a high current density of 200 mA cm^(-2) toward hydrogen evolution.展开更多
Despite red phosphorous(P)-based anodes hold great promise for advanced lithium-ion batteries due to their high theoretical capacity, their practical application is hindered by poor electronic conductivity and drastic...Despite red phosphorous(P)-based anodes hold great promise for advanced lithium-ion batteries due to their high theoretical capacity, their practical application is hindered by poor electronic conductivity and drastic volume changes during charge-discharge processes. In order to tackle these issues, herein, a facile grinding method was developed to embed sub-micro-and nano-sized red P particles in N,P-codoped hierarchical porous carbon(NPHPC). Such a unique structure enables P@NPHPC long-cyclic stability(1120 mAh g^-1 after 100 cycles at 100 mA g^-1) and superior rate performance(248 mA h g^-1 at 6400 mA g^-1). It is believed that our method holds great potential in scalable synthesis of P@carbon composites for future practical applications.展开更多
基金Project(2016YFB0700302)supported by the National Key Research and Development Program of ChinaProjects(51862030,51563020)supported by the National Natural Science Foundation of China。
文摘Spherical carbonyl iron(Fe)powders were coated with magnesioferrite(MgFe2O4)insulating coating layer and then mixed with epoxy-modified silicone resin(ESR).Soft magnetic composites(SMCs)were fabricated by compaction of the coated powders and annealing treatment.Transmission electron microscopy(TEM),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),X-ray diffractometry(XRD)and X-ray photoelectron spectroscopy(XPS)revealed that the MgFe2O4 layer was coated on the surface of the iron powders.The magnetic properties of SMCs were determined using a vibrating sample magnetometer and an auto testing system for magnetic materials.The results showed that the SMCs prepared at 800 MPa and 550℃ exhibited a significant core loss of 167.5 W/kg at 100 kHz and 50 mT.
基金Project(2007AA03Z548) supported by High-Tech Research and Development Program of ChinaProject(50971066) supported by the National Natural Science Foundation of ChinaProject(1283000349) supported by the Jiangsu University Research Fund for Advanced Scholars,China
文摘Aluminum matrix composites reinforced by in situ Al2O3 and Al3Zr particles are fabricated from A356-Zr(CO3)2 system via magnetochemistry reaction,and the morphologies,sizes and distributions of the in situ particles as well as the microstructures,mechanical mechanisms of the composites are investigated by XRD,SEM,TEM and in situ tensile tests.The results indicate that with the pulsed magnetic field assistance,the morphologies of the in situ particles are mainly with ball-shape,the sizes are in nanometer scale and the distributions in the matrix are uniform.The interfaces between the in situ particles and the aluminum matrix are net and no interfacial outgrowth is observed.These are due to the strong vibration induced by the applied magnetic field in the aluminum melt,which in turn,accelerates the melt reactions.The effects of the magnetic field on the above contributions are discussed in detail.
基金Supported by the Program for New Century Excellent Talents in University (NCET-07-0738)
文摘Acrylonitrile-methyl methacrylate (AN-MMA) copolymer/silica nanocomposites were synthesized by in-situ emulsion polymerization initiated by 2,2'-azobis(2-amidinopropane) dihydrochloride absorbed onto colloidal silica particles, and the mesoporous carbon materials were prepared through carbonization of the obtained AN-MMA copolymer/silica nanocomposites, followed by HF etching. Thermogravimetric analysis of AN-MMAcopolymer/silica nanocomposltes snoweO mat me caroon ylelCl or copolymer was slgnuy oecreaseo as Silica parucle incorporated. N2 adsorption-desorption, scan electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the structure and morphology of the mesoporous carbon materials. Both SEM and
基金supported by the National Natural Science Foundation of China (21473153 and 51771162)Support Program for the Top Young Talents of Hebei Province, China Postdoctoral Science Foundation (2015M580214)the Scientific and Technological Research and Development Program of Qinhuangdao City (201701B004)
文摘MXene, a new type of two-dimensional layered transition metal carbide material differing from graphene, demonstrates intriguing chemical/physical properties and wide applications in recent years. Here, the preparation of the self-assembled MXene-gold nanoparticles (MXene@AuNPs) nanocomposites with tunable sizes is reported. The nano- composites are obtained via the self-reduction reactions of MXene material in a HAuCI4 solution at room temperature. The sizes of the Au particles can be well-controlled by reg- ulating the self-reduction reaction time. They can greatly in- fluence the catalytic behaviors of the MXene@AuNPs composites. MXene@AuNPs composites with optimized re- duction time show high catalytic performances and good cycle stability for model catalytic reactions of nRro-compounds, such as 2-nitrophenol and 4-nitrophenol. This work demon- strates a new approach for the preparation of tunable MXene- based self-assembled composites.
文摘N-doped porous carbon materials have been prepared by a simple one-step pyrolysis of ethylenediaminetetraacetic acid (EDTA) and melamine in the presence of KOH and Co(NO3)2·6H20. The combination of the high specific area (1,485 m2.g-l), high nitrogen content (10.8%) and suitable graphitic degree results in catalysts exhibiting high activity (with onset and half-wave potentials of 0.88 and 0.79 V vs the reversible hydrogen electrode (RHE), respectively) and four-electron selectivity for the oxygen reduction reaction (ORR) in alkaline medium---comparable to a commercial Pt/C catalyst, but far exceeding Pt/C in stability and durability. Owing to their superb ORR performance, low cost and facile preparation, the catalysts have great potential applications in fuel cells, metal-air batteries, and ORR-related electrochemical industries.
基金supported in part by the National Natural Science Foundation of China (21475007 and 21675009)the Fundamental Research Funds for the Central Universities (buctrc201608 and buctrc201720)the support from the “Public Hatching Platform for Recruited Talents of Beijing University of Chemical Technology”
文摘The development of ultrasmall transition-metal dichalcogenide(such as MoS_2,MoSe_2) nanostructures is an efficient strategy to increase the active edge sites and overall performance for hydrogen evolution reaction. Here,we report an in-situ tearing strategy to produce the carbon nanotube supported subnanometer ternary MoSeS(denoted as CNTs@NiSe@MoSeS) for efficient hydrogen evolution. Large(18.3 ± 1.1nm in length) multilayer MoS_2 sheets grown on Ni(OH)_2 thin film are torn into subnanometer(5.2 ± 0.7 nm in length) MoSeS via a subsequent selenization progress,along with the transformation of Ni(OH)_2 thin film into small Ni Se nanoplates. The resulting nanocomposite exhibits abundant active edge sites,outstanding 10,000-cycle stability and ultrahigh activity with a low overpotential of 189 mV at a high current density of 200 mA cm^(-2) toward hydrogen evolution.
基金supported by the National Key Basic Research Program of China (2015CB932200)the National Natural Science Foundation of China (61704076)+2 种基金the Natural Science Foundation of Jiangsu Province (BK20171018)Jiangsu Specially-Appointed Professor Program (54935012)the support from the Fundamental Research Funds for the Central Universities (31020180QD094)
文摘Despite red phosphorous(P)-based anodes hold great promise for advanced lithium-ion batteries due to their high theoretical capacity, their practical application is hindered by poor electronic conductivity and drastic volume changes during charge-discharge processes. In order to tackle these issues, herein, a facile grinding method was developed to embed sub-micro-and nano-sized red P particles in N,P-codoped hierarchical porous carbon(NPHPC). Such a unique structure enables P@NPHPC long-cyclic stability(1120 mAh g^-1 after 100 cycles at 100 mA g^-1) and superior rate performance(248 mA h g^-1 at 6400 mA g^-1). It is believed that our method holds great potential in scalable synthesis of P@carbon composites for future practical applications.