针对准循环低密度奇偶校验(QC-LDPC)码中准循环基矩阵的移位系数确定问题,该文提出基于等差数列(AP)的确定方法。该方法构造的校验矩阵的围长至少为8,移位系数由简单的数学表达式确定,节省了编解码存储空间。研究结果表明,该方法对码长...针对准循环低密度奇偶校验(QC-LDPC)码中准循环基矩阵的移位系数确定问题,该文提出基于等差数列(AP)的确定方法。该方法构造的校验矩阵的围长至少为8,移位系数由简单的数学表达式确定,节省了编解码存储空间。研究结果表明,该方法对码长和码率参数的设计具有较好的灵活性。同时表明在加性高斯白噪声(AWGN)信道和置信传播(BP)译码算法下,该方法构造的码字在码长为1008、误比特率为510-时,信噪比优于渐进边增长(PEG)码近0.3 d B。展开更多
针对压缩感知(CS)中由观测噪声引起的信号重建误差问题,提出利用非相关性约束理论作为衡量压缩重建条件的重构误差向量的方法。该方法基于线性分组码中稀疏校验矩阵的零化子特性,建立了以误差向量为目标信号的线性规划问题,实现了低密...针对压缩感知(CS)中由观测噪声引起的信号重建误差问题,提出利用非相关性约束理论作为衡量压缩重建条件的重构误差向量的方法。该方法基于线性分组码中稀疏校验矩阵的零化子特性,建立了以误差向量为目标信号的线性规划问题,实现了低密度奇偶校验(LDPC)码的压缩感知重构。仿真结果表明:在加性高斯白噪声信道和原对偶内点算法下,选取的3种LDPC码均具备较强的信号重构能力,其中Mac Kay随机码的相关性系数较小,因此在信噪比为-1 d B时就可达到100%的误差向量重构成功率。同时表明在满足误比特率要求下,CS-LDPC码可使系统实现低信噪比下的高可靠性通信。展开更多
为降低LDPC(低密度奇偶校验码)码错误平层,提出一种基于环分类搜索的APPS-LDPC(数列分割移位的LDPC)码构造算法。该算法具有码长、码率和列重的任意可设性,同时该类码的Tanner图围长至少为8。循环移位因子可以通过简单的代数表达式描述...为降低LDPC(低密度奇偶校验码)码错误平层,提出一种基于环分类搜索的APPS-LDPC(数列分割移位的LDPC)码构造算法。该算法具有码长、码率和列重的任意可设性,同时该类码的Tanner图围长至少为8。循环移位因子可以通过简单的代数表达式描述,从而降低内存需求。仿真结果表明,当误码率达到10-5时,APPS-LDPC码(496,248)相对于PEG-LDPC(渐进边增长LDPC)码获得了约1.9 d B的性能提升;随着信噪比的升高,两条译码性能曲线之间的差距将更大。此外,列重为3的APPS-LDPC码(6144,5376)在信噪比4.6 d B以后并未出现明显的错误平层。该构造算法与PS-LDPC码相比,在误码率达到10-8时大约获得0.25 d B增益;与围长为4和6的PEG构造算法相比,在错误平层区域其译码性能极优;同时相较于此两者,其构造复杂度和耗时也展现出一定优势。通过基于Tanner图的诱捕集分析方法,统计APPS-LDPC码(496,248)中由8环组成的部分小型诱捕集并不存在,从而证明了其错误平层降低的原因。展开更多
文摘针对准循环低密度奇偶校验(QC-LDPC)码中准循环基矩阵的移位系数确定问题,该文提出基于等差数列(AP)的确定方法。该方法构造的校验矩阵的围长至少为8,移位系数由简单的数学表达式确定,节省了编解码存储空间。研究结果表明,该方法对码长和码率参数的设计具有较好的灵活性。同时表明在加性高斯白噪声(AWGN)信道和置信传播(BP)译码算法下,该方法构造的码字在码长为1008、误比特率为510-时,信噪比优于渐进边增长(PEG)码近0.3 d B。
文摘针对压缩感知(CS)中由观测噪声引起的信号重建误差问题,提出利用非相关性约束理论作为衡量压缩重建条件的重构误差向量的方法。该方法基于线性分组码中稀疏校验矩阵的零化子特性,建立了以误差向量为目标信号的线性规划问题,实现了低密度奇偶校验(LDPC)码的压缩感知重构。仿真结果表明:在加性高斯白噪声信道和原对偶内点算法下,选取的3种LDPC码均具备较强的信号重构能力,其中Mac Kay随机码的相关性系数较小,因此在信噪比为-1 d B时就可达到100%的误差向量重构成功率。同时表明在满足误比特率要求下,CS-LDPC码可使系统实现低信噪比下的高可靠性通信。
文摘为降低LDPC(低密度奇偶校验码)码错误平层,提出一种基于环分类搜索的APPS-LDPC(数列分割移位的LDPC)码构造算法。该算法具有码长、码率和列重的任意可设性,同时该类码的Tanner图围长至少为8。循环移位因子可以通过简单的代数表达式描述,从而降低内存需求。仿真结果表明,当误码率达到10-5时,APPS-LDPC码(496,248)相对于PEG-LDPC(渐进边增长LDPC)码获得了约1.9 d B的性能提升;随着信噪比的升高,两条译码性能曲线之间的差距将更大。此外,列重为3的APPS-LDPC码(6144,5376)在信噪比4.6 d B以后并未出现明显的错误平层。该构造算法与PS-LDPC码相比,在误码率达到10-8时大约获得0.25 d B增益;与围长为4和6的PEG构造算法相比,在错误平层区域其译码性能极优;同时相较于此两者,其构造复杂度和耗时也展现出一定优势。通过基于Tanner图的诱捕集分析方法,统计APPS-LDPC码(496,248)中由8环组成的部分小型诱捕集并不存在,从而证明了其错误平层降低的原因。