以磺胺嘧啶(Sulfadiazine,SDZ)为研究对象,通过室内原状土柱(0~15 cm,土柱Ⅰ和15~30 cm,土柱Ⅱ)出流试验探讨了其在不同剖面深度处的迁移特征,运用Hydrus-1D软件对试验结果进行模拟,并对不同流速下磺胺嘧啶在0~200 cm土壤中的迁移行为...以磺胺嘧啶(Sulfadiazine,SDZ)为研究对象,通过室内原状土柱(0~15 cm,土柱Ⅰ和15~30 cm,土柱Ⅱ)出流试验探讨了其在不同剖面深度处的迁移特征,运用Hydrus-1D软件对试验结果进行模拟,并对不同流速下磺胺嘧啶在0~200 cm土壤中的迁移行为做了预测。结果表明:SDZ在原状土柱Ⅱ中的穿透曲线相较于原状土柱Ⅰ的发生左移,即较深层土壤中,SDZ的迁移速度更快,这主要是受土壤理化性质,如有机质、阳离子交换量和p H等的影响;两区模型(TRM)模拟的R^2>0.91,均方根误差RMSE<0.061,不动水区域f<0.154,其模拟效果优于单点模型(OSM)和两点模型(TSM),表明土壤的不可动区域是吸附SDZ的重要部分。预测结果显示:同一流速时,SDZ浓度峰值随着土壤剖面深度增加而减小,出流时间逐渐增大;同一深度处,当水流速度从0.017 cm min^(-1)增加到0.030 cm min^(-1)再到0.100 cm min^(-1)时,磺胺嘧啶在土壤中的迁移速度不断加快,出流浓度也越来越高,当流速为0.100 cm min^(-1)时,SDZ可快速穿过土层进入地下水,其穿透曲线不再对称,出现拖尾现象。展开更多
文摘以磺胺嘧啶(Sulfadiazine,SDZ)为研究对象,通过室内原状土柱(0~15 cm,土柱Ⅰ和15~30 cm,土柱Ⅱ)出流试验探讨了其在不同剖面深度处的迁移特征,运用Hydrus-1D软件对试验结果进行模拟,并对不同流速下磺胺嘧啶在0~200 cm土壤中的迁移行为做了预测。结果表明:SDZ在原状土柱Ⅱ中的穿透曲线相较于原状土柱Ⅰ的发生左移,即较深层土壤中,SDZ的迁移速度更快,这主要是受土壤理化性质,如有机质、阳离子交换量和p H等的影响;两区模型(TRM)模拟的R^2>0.91,均方根误差RMSE<0.061,不动水区域f<0.154,其模拟效果优于单点模型(OSM)和两点模型(TSM),表明土壤的不可动区域是吸附SDZ的重要部分。预测结果显示:同一流速时,SDZ浓度峰值随着土壤剖面深度增加而减小,出流时间逐渐增大;同一深度处,当水流速度从0.017 cm min^(-1)增加到0.030 cm min^(-1)再到0.100 cm min^(-1)时,磺胺嘧啶在土壤中的迁移速度不断加快,出流浓度也越来越高,当流速为0.100 cm min^(-1)时,SDZ可快速穿过土层进入地下水,其穿透曲线不再对称,出现拖尾现象。