Electrocatalytic reduction of CO_(2)(CO_(2)RR)to multicarbon products is an efficient approach for ad-dressing the energy crisis and achieving carbon neutrality.In H-cells,achieving high-current C_(2)products is chall...Electrocatalytic reduction of CO_(2)(CO_(2)RR)to multicarbon products is an efficient approach for ad-dressing the energy crisis and achieving carbon neutrality.In H-cells,achieving high-current C_(2)products is challenging because of the inefficient mass transfer of the catalyst and the presence of the hydrogen evolution reaction(HER).In this study,dendritic Cu/Cu_(2)O with abundant Cu^(0)/Cu^(+)interfaces and numerous dendritic curves was synthesized in a CO_(2)atmosphere,resulting in the high selectivity and current density of the C_(2)products.Dendritic Cu/Cu_(2)O achieved a C_(2)Faradaic efficiency of 69.8%and a C_(2)partial current density of 129.5 mA cm^(-2)in an H-cell.Finite element simulations showed that a dendritic structure with a high curvature generates a strong electric field,leading to a localized CO_(2)concentration.Additionally,DRT analysis showed that a dendritic struc-ture with a high curvature actively adsorbed the surrounding high concentration of CO_(2),enhancing the mass transfer rate and achieving a high current density.During the experiment,the impact of the electronic structure on the performance of the catalyst was investigated by varying the atomic ratio of Cu^(0)/Cu^(+) on the catalyst surface,which resulted in improved ethylene selectivity.Under the optimal atomic ratio of Cu^(0)/Cu^(+),the charge transfer resistance was minimized,and the desorption rate of the intermediates was low,favoring C_(2) generation.Density functional theory calculations indicated that the Cu^(0)/Cu^(+) interfaces exhibited a lower Gibbs free energy for the rate-determining step,enhancing C_(2)H_(4) formation.The Cu/Cu_(2)O catalyst also exhibited a low Cu d-band center,which enhanced the adsorption stability of *CO on the surface and facilitated C_(2)formation.This observa-tion explained the higher yield of C_(2) products at the Cu^(0)/Cu^(+) interface than that of H_(2) under rapid mass transfer.The results of the net present value model showed that the H-cell holds promising industrial prospects,contingent upon it being a catalyst with both high selectivity and high current density.This approach of integrating the structure and composition provides new insights for ad-vancing the CO_(2)RR towards high-current C_(2) products.展开更多
Heterogeneous catalysts with ultra-small clusters and atomically dispersed(USCAD)active sites have gained increasing attention in recent years.However,developing USCAD catalysts with high-density metal sites anchored ...Heterogeneous catalysts with ultra-small clusters and atomically dispersed(USCAD)active sites have gained increasing attention in recent years.However,developing USCAD catalysts with high-density metal sites anchored in porous nanomaterials is still challenging.Here,through the template-free S-assisted pyrolysis of low-cost Fe-salts with melamine(MA),porous alveolate Fe/g-C3N4 catalysts with high-density(Fe loading up to 17.7 wt%)and increased USCAD Fe sites were synthesized.The presence of a certain amount of S species in the Fe-salts/MA system plays an important role in the formation of USCAD S-Fe-salt/CN catalysts;the S species act as a"sacrificial carrier"to increase the dispersion of Fe species through Fe-S coordination and generate porous alveolate structure by escaping in the form of SO2 during pyrolysis.The S-Fe-salt/CN catalysts exhibit greatly promoted activity and reusability for degrading various organic pollutants in advanced oxidation processes compared to the corresponding Fe-salt/CN catalysts,due to the promoted accessibility of USCAD Fe sites by the porous alveolate structure.This S-assisted method exhibits good feasibility in a large variety of S species(thiourea,S powder,and NH4SCN)and Fe salts,providing a new avenue for the low-cost and large-scale synthesis of high-density USCAD metal/g-C3N4 catalysts.展开更多
Low-cost catalysts with high activity are in immediate demand for energy storage and conversion devices.In this study,polyvinyl pyrrolidone was used as a complexing agent to synthesize La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)...Low-cost catalysts with high activity are in immediate demand for energy storage and conversion devices.In this study,polyvinyl pyrrolidone was used as a complexing agent to synthesize La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)perovskite oxide.The obtained porous layered LSCF has a large specific surface area of 23.74 m^(2)/g,four times higher than that prepared by the traditional sol-gel method(5.08 m^(2)/g).The oxygen reduction reaction activity of the oxide in 0.1 mol/L KOH solution was studied using a rotating ring-disk electrode.In the tests,the initial potential of 0.88 V(vs.reversible hydrogen electrode)and the limiting diffusion current density of 5.02 mA/cm^(2)were obtained at 1600 r/min.Therefore,higher catalytic activity and stability were demonstrated,compared with the preparation of LSCF perovskite oxide by the traditional method.展开更多
Rational designs of electrocatalytic active sites and architectures are of great importance to develop cost-efficient non-noble metal electrocatalysts towards efficient oxygen reduction reaction(ORR)for high-performan...Rational designs of electrocatalytic active sites and architectures are of great importance to develop cost-efficient non-noble metal electrocatalysts towards efficient oxygen reduction reaction(ORR)for high-performance energy conversion and storage devices.In this work,active amorphous Fe-based nanoclusters(Fe NC)are elaborately embedded at the inner surface of balloonlike N-doped hollow carbon(Fe NC/Csphere)as an efficient ORR electrocatalyst with an ultrathin wall of about 10 nm.When evaluated for electrochemical performance,Fe NC/Csphere exhibits decent ORR activity with a diffusionlimited current density of~5.0 mA/cm^(2)and a half-wave potential of~0.81 V in alkaline solution,which is comparable with commercial Pt/C and superior to Fe nanoparticles supported on carbon sheet(Fe NP/C sheet)counterpart.The electrochemical analyses combined with electronic structure characterizations reveal that robust Fe-N interactions in amorphous Fe nanoclusters are helpful for the adsorption of surface oxygen-relative species,and the strong support effect of N-doped hollow carbon is benefitial for accelerating the interfacial electron transfer,which jointly contributes to improve ORR kinetics for Fe NC/Csphere.展开更多
Lithium(Li)metal is considered as the candidate for the next generation of Li metal battery(LMB)anodes due to its high capacity and the lowest potential,which is expected to meet the requirements of energy storage dev...Lithium(Li)metal is considered as the candidate for the next generation of Li metal battery(LMB)anodes due to its high capacity and the lowest potential,which is expected to meet the requirements of energy storage devices.Unfortunately,the uncontrollable growth of Li dendrites during the charge/discharge process,as well as the resulting problems of poor cycling stability,low coulomb efficiency and safety risk,has restricted the commercialization of Li anode.Herein,an in-situ interfacial film containing three-dimensional(3D)rod-like micron-structure silver(Ag)is constructed on the surface of the Li metal.Due to the 3D rod-like micron-structure used to homogenize the distribution of current density,achieving uniform nucleation and growth of electrodeposited Li,the produced Li-Ag alloy was employed to restrain the formation of“dead”Li and the in-situ formed LiNO_(3) was utilized to facilitate the stability of solid-electrolyte interface(SEI)film,so the growth of dendritic Li is suppressed via the synergistic effect of structure and surface chemistry regulation.The obtained Li anode can achieve cycling stability at a high current density of 10 mA/cm^(2).This work considers multiaspect factors inducing uniform Li electrodeposition,and provides new insights for the commercialization of LMB.展开更多
On the basis of the association theory of nuclear structure, we have studied the (t, p) reaction. Study was carried out with the distorted plane waves of triton and of proton. It has been suggested that bineutron as...On the basis of the association theory of nuclear structure, we have studied the (t, p) reaction. Study was carried out with the distorted plane waves of triton and of proton. It has been suggested that bineutron association is acceptable if the time during which the association maintains its structure, is large compared with the time when neutrons are in a dissociated form, and there is no exchange of nucleons between fragments associations. The cross section is written as a product of two factors, one is the spectroscopic factor which reflects the nature of the nuclear structure concerned and the other describes the process in which the target nucleus captures two nucleons as a cluster into an orbit which is characterized by a form factor. In the argument, that the radial wave function of two neutrons which form association captured nuclei close to each other, this leads to the formation of bineutron association on the nuclei surface. In this approach, the proton is emitted at the same point, which is captured bineutron association.展开更多
A tin (IV) complex with 4,5-benzo-1,2-dithiol-3-thione (C7H4S3) (A), [SnCI4 (C7H4S3)2] (B) was synthesized. The structure of the obtained complex (B) was characterized by Infrared Spectroscopy (IR), anal...A tin (IV) complex with 4,5-benzo-1,2-dithiol-3-thione (C7H4S3) (A), [SnCI4 (C7H4S3)2] (B) was synthesized. The structure of the obtained complex (B) was characterized by Infrared Spectroscopy (IR), analysis centesimal composition, and theoretical study. The complex (B) has an octahedral structure, where a tin in the center takes an octahedral geometry and is coordinated by four atoms of chlorine and two thiocarbonyl sulfur atom (C=S) of the ligand.展开更多
文摘Electrocatalytic reduction of CO_(2)(CO_(2)RR)to multicarbon products is an efficient approach for ad-dressing the energy crisis and achieving carbon neutrality.In H-cells,achieving high-current C_(2)products is challenging because of the inefficient mass transfer of the catalyst and the presence of the hydrogen evolution reaction(HER).In this study,dendritic Cu/Cu_(2)O with abundant Cu^(0)/Cu^(+)interfaces and numerous dendritic curves was synthesized in a CO_(2)atmosphere,resulting in the high selectivity and current density of the C_(2)products.Dendritic Cu/Cu_(2)O achieved a C_(2)Faradaic efficiency of 69.8%and a C_(2)partial current density of 129.5 mA cm^(-2)in an H-cell.Finite element simulations showed that a dendritic structure with a high curvature generates a strong electric field,leading to a localized CO_(2)concentration.Additionally,DRT analysis showed that a dendritic struc-ture with a high curvature actively adsorbed the surrounding high concentration of CO_(2),enhancing the mass transfer rate and achieving a high current density.During the experiment,the impact of the electronic structure on the performance of the catalyst was investigated by varying the atomic ratio of Cu^(0)/Cu^(+) on the catalyst surface,which resulted in improved ethylene selectivity.Under the optimal atomic ratio of Cu^(0)/Cu^(+),the charge transfer resistance was minimized,and the desorption rate of the intermediates was low,favoring C_(2) generation.Density functional theory calculations indicated that the Cu^(0)/Cu^(+) interfaces exhibited a lower Gibbs free energy for the rate-determining step,enhancing C_(2)H_(4) formation.The Cu/Cu_(2)O catalyst also exhibited a low Cu d-band center,which enhanced the adsorption stability of *CO on the surface and facilitated C_(2)formation.This observa-tion explained the higher yield of C_(2) products at the Cu^(0)/Cu^(+) interface than that of H_(2) under rapid mass transfer.The results of the net present value model showed that the H-cell holds promising industrial prospects,contingent upon it being a catalyst with both high selectivity and high current density.This approach of integrating the structure and composition provides new insights for ad-vancing the CO_(2)RR towards high-current C_(2) products.
文摘Heterogeneous catalysts with ultra-small clusters and atomically dispersed(USCAD)active sites have gained increasing attention in recent years.However,developing USCAD catalysts with high-density metal sites anchored in porous nanomaterials is still challenging.Here,through the template-free S-assisted pyrolysis of low-cost Fe-salts with melamine(MA),porous alveolate Fe/g-C3N4 catalysts with high-density(Fe loading up to 17.7 wt%)and increased USCAD Fe sites were synthesized.The presence of a certain amount of S species in the Fe-salts/MA system plays an important role in the formation of USCAD S-Fe-salt/CN catalysts;the S species act as a"sacrificial carrier"to increase the dispersion of Fe species through Fe-S coordination and generate porous alveolate structure by escaping in the form of SO2 during pyrolysis.The S-Fe-salt/CN catalysts exhibit greatly promoted activity and reusability for degrading various organic pollutants in advanced oxidation processes compared to the corresponding Fe-salt/CN catalysts,due to the promoted accessibility of USCAD Fe sites by the porous alveolate structure.This S-assisted method exhibits good feasibility in a large variety of S species(thiourea,S powder,and NH4SCN)and Fe salts,providing a new avenue for the low-cost and large-scale synthesis of high-density USCAD metal/g-C3N4 catalysts.
基金Project(20192BAB216015)supported by the Science and Technology Program of Jiangxi Province,ChinaProjects(GJJ180464,GJJ171499)supported by the Science and Technology Program of Education Department of Jiangxi Province,China+2 种基金Project(jxxjbs17057)supported by the Scientific Research Foundation of Jiangxi University of Science and Technology,ChinaProject([2018]50)supported by the Key R&D Programs of Science and Technology Project of Ganzhou City,ChinaProject([2017]179)supported by the Science and Technology Project of Ganzhou City,China。
文摘Low-cost catalysts with high activity are in immediate demand for energy storage and conversion devices.In this study,polyvinyl pyrrolidone was used as a complexing agent to synthesize La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)perovskite oxide.The obtained porous layered LSCF has a large specific surface area of 23.74 m^(2)/g,four times higher than that prepared by the traditional sol-gel method(5.08 m^(2)/g).The oxygen reduction reaction activity of the oxide in 0.1 mol/L KOH solution was studied using a rotating ring-disk electrode.In the tests,the initial potential of 0.88 V(vs.reversible hydrogen electrode)and the limiting diffusion current density of 5.02 mA/cm^(2)were obtained at 1600 r/min.Therefore,higher catalytic activity and stability were demonstrated,compared with the preparation of LSCF perovskite oxide by the traditional method.
基金supported by the National Natural Science Foundation of China(No.U1632161)the Scientific Research Start-up Fund for Introduction of High-level Talents of HFNU in 2020(No.2020rcjj03)+1 种基金the Anhui Provincial College Students Innovation and Entrepreneurship Plan Project in 2020(No.S202014098170)the Anhui Provincial Natural Science Foundation(No.1708085MA21,No.1808085JQ13,No.2008085MF217)。
文摘Rational designs of electrocatalytic active sites and architectures are of great importance to develop cost-efficient non-noble metal electrocatalysts towards efficient oxygen reduction reaction(ORR)for high-performance energy conversion and storage devices.In this work,active amorphous Fe-based nanoclusters(Fe NC)are elaborately embedded at the inner surface of balloonlike N-doped hollow carbon(Fe NC/Csphere)as an efficient ORR electrocatalyst with an ultrathin wall of about 10 nm.When evaluated for electrochemical performance,Fe NC/Csphere exhibits decent ORR activity with a diffusionlimited current density of~5.0 mA/cm^(2)and a half-wave potential of~0.81 V in alkaline solution,which is comparable with commercial Pt/C and superior to Fe nanoparticles supported on carbon sheet(Fe NP/C sheet)counterpart.The electrochemical analyses combined with electronic structure characterizations reveal that robust Fe-N interactions in amorphous Fe nanoclusters are helpful for the adsorption of surface oxygen-relative species,and the strong support effect of N-doped hollow carbon is benefitial for accelerating the interfacial electron transfer,which jointly contributes to improve ORR kinetics for Fe NC/Csphere.
基金Projects(51974256,51804259)supported by the National Natural Science Foundation of ChinaProject(2019ZDLGY04-05)supported by the Key R&D Program of Shaanxi,China+6 种基金Projects(2019JLZ-01,2019JLM-29,2020JQ-189)supported by the Natural Science Foundation of Shaanxi,ChinaProject(2019JC-12)supported by the Outstanding Young Scholars of Shaanxi,ChinaProject(2019-TS-06)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NPU),ChinaProjects(19GH020302,3102019JC005)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2018M641015)supported by the China Postdoctoral Science FoundationProject(BK20180191)supported by the Natural Science Foundation of Jiangsu,ChinaProject(CX202026)supported by the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,China。
文摘Lithium(Li)metal is considered as the candidate for the next generation of Li metal battery(LMB)anodes due to its high capacity and the lowest potential,which is expected to meet the requirements of energy storage devices.Unfortunately,the uncontrollable growth of Li dendrites during the charge/discharge process,as well as the resulting problems of poor cycling stability,low coulomb efficiency and safety risk,has restricted the commercialization of Li anode.Herein,an in-situ interfacial film containing three-dimensional(3D)rod-like micron-structure silver(Ag)is constructed on the surface of the Li metal.Due to the 3D rod-like micron-structure used to homogenize the distribution of current density,achieving uniform nucleation and growth of electrodeposited Li,the produced Li-Ag alloy was employed to restrain the formation of“dead”Li and the in-situ formed LiNO_(3) was utilized to facilitate the stability of solid-electrolyte interface(SEI)film,so the growth of dendritic Li is suppressed via the synergistic effect of structure and surface chemistry regulation.The obtained Li anode can achieve cycling stability at a high current density of 10 mA/cm^(2).This work considers multiaspect factors inducing uniform Li electrodeposition,and provides new insights for the commercialization of LMB.
文摘On the basis of the association theory of nuclear structure, we have studied the (t, p) reaction. Study was carried out with the distorted plane waves of triton and of proton. It has been suggested that bineutron association is acceptable if the time during which the association maintains its structure, is large compared with the time when neutrons are in a dissociated form, and there is no exchange of nucleons between fragments associations. The cross section is written as a product of two factors, one is the spectroscopic factor which reflects the nature of the nuclear structure concerned and the other describes the process in which the target nucleus captures two nucleons as a cluster into an orbit which is characterized by a form factor. In the argument, that the radial wave function of two neutrons which form association captured nuclei close to each other, this leads to the formation of bineutron association on the nuclei surface. In this approach, the proton is emitted at the same point, which is captured bineutron association.
文摘A tin (IV) complex with 4,5-benzo-1,2-dithiol-3-thione (C7H4S3) (A), [SnCI4 (C7H4S3)2] (B) was synthesized. The structure of the obtained complex (B) was characterized by Infrared Spectroscopy (IR), analysis centesimal composition, and theoretical study. The complex (B) has an octahedral structure, where a tin in the center takes an octahedral geometry and is coordinated by four atoms of chlorine and two thiocarbonyl sulfur atom (C=S) of the ligand.