The dissolution of pyrite was studied with Phanerochaete chrysosporium(P.chrysosporium).This fungus resulted in the dissolution of 18%iron and 33%sulfur.The oxidization layer was formed on the pyrite surface,which pro...The dissolution of pyrite was studied with Phanerochaete chrysosporium(P.chrysosporium).This fungus resulted in the dissolution of 18%iron and 33%sulfur.The oxidization layer was formed on the pyrite surface,which probably consisted of iron oxide,iron oxy-hydroxide,iron sulfate,elemental sulfur and mycelia.The electrochemical characteristics of pyrite were studied in the systems without and with P.chrysosporium.P.chrysosporium could accelerate the dissolution of pyrite by decreasing pitting potential and polarization resistance plus improving polarization current,corrosion potential and corrosion current density.The dissolution of pyrite is the combined effect of enzymes,hydrogen peroxide,ferric iron and organic acids.Enzymes attack the chemical bonds by free radicals.Organic acids dissolve pyrite by acidolysis and complexolysis.Enzymes and hydrogen peroxide play an essential role in this process.展开更多
We investigated the reduction of lepidocrocite(γ-FeOOH) by Shewanella oneidensis MR-1 in the presence and absence of Cd. The results showed that Cd^(2+) retarded microbial reduction of γ-Fe OOH and avoided formation...We investigated the reduction of lepidocrocite(γ-FeOOH) by Shewanella oneidensis MR-1 in the presence and absence of Cd. The results showed that Cd^(2+) retarded microbial reduction of γ-Fe OOH and avoided formation of magnetite. The inhibitory effect on γ-Fe OOH transformation may not result from Cd^(2+) toxicity to the bacterium; it rather was probably due to competitive adsorption between Cd^(2+) and Fe^(2+) on γ-Fe OOH as its surface reduction catalyzed by adsorbed Fe^(2+) was eliminated by adsorption of Cd^(2+).展开更多
基金Project(U1608254)supported by the National Natural Science Foundation of China
文摘The dissolution of pyrite was studied with Phanerochaete chrysosporium(P.chrysosporium).This fungus resulted in the dissolution of 18%iron and 33%sulfur.The oxidization layer was formed on the pyrite surface,which probably consisted of iron oxide,iron oxy-hydroxide,iron sulfate,elemental sulfur and mycelia.The electrochemical characteristics of pyrite were studied in the systems without and with P.chrysosporium.P.chrysosporium could accelerate the dissolution of pyrite by decreasing pitting potential and polarization resistance plus improving polarization current,corrosion potential and corrosion current density.The dissolution of pyrite is the combined effect of enzymes,hydrogen peroxide,ferric iron and organic acids.Enzymes attack the chemical bonds by free radicals.Organic acids dissolve pyrite by acidolysis and complexolysis.Enzymes and hydrogen peroxide play an essential role in this process.
基金financially supported by the National Natural Science Foundation of China(41601239)the Highlevel Leading Talent Introduction Program of GDAS,the China Postdoctoral Science Foundation(2016M600644)the"Pearl River Talents"Postdoctoral Program of Guangdong Province,and the National Key Research and Development Program of China(2016YFD0800703)
文摘We investigated the reduction of lepidocrocite(γ-FeOOH) by Shewanella oneidensis MR-1 in the presence and absence of Cd. The results showed that Cd^(2+) retarded microbial reduction of γ-Fe OOH and avoided formation of magnetite. The inhibitory effect on γ-Fe OOH transformation may not result from Cd^(2+) toxicity to the bacterium; it rather was probably due to competitive adsorption between Cd^(2+) and Fe^(2+) on γ-Fe OOH as its surface reduction catalyzed by adsorbed Fe^(2+) was eliminated by adsorption of Cd^(2+).