Metal halide perovskite(MHP)has become one of the most promising materials for photocatalytic CO_(2) reduction owing to the wide light absorption range,negative conduction band position and high reduction ability.Howe...Metal halide perovskite(MHP)has become one of the most promising materials for photocatalytic CO_(2) reduction owing to the wide light absorption range,negative conduction band position and high reduction ability.However,photoreduction of CO_(2) by MHP remains a challenge because of the slow charge separation and transfer.Herein,a cobalt single-atom modified nitrogen-doped graphene(Co-NG)cocatalyst is prepared for enhanced photocatalytic CO_(2) reduction of bismuth-based MHP Cs_(3)Bi_(2)Br_(9).The optimal Cs_(3)Bi_(2)Br_(9)/Co-NG composite exhibits the CO production rate of 123.16μmol g^(-1)h^(-1),which is 17.3 times higher than that of Cs_(3)Bi_(2)Br_(9).Moreover,the Cs_(3)Bi_(2)Br_(9)/Co-NG composite photocatalyst exhibits nearly 100% CO selectivity as well as impressive long-term stability.Charge carrier dynamic characterizations such as Kelvin probe force microscopy(KPFM),single-particle PL microscope and transient absorption(TA)spectroscopy demonstrate the vital role of Co-NG cocatalyst in accelerating the transfer and separation of photogenerated charges and improving photocatalytic performance.The reaction mechanism has been demonstrated by in situ diffuse reflectance infrared Fourier-transform spectroscopy measurement.In addition,in situ X-ray photoelectron spectroscopy test and theoretical calculation reveal the reaction reactive sites and reaction energy barriers,demonstrating that the introduction of Co-NG promotes the formation of ^(*)COOH intermediate,providing sufficient evidence for the highly selective generation of CO.This work provides an effective single-atom-based cocatalyst modification strategy for photocatalytic CO_(2) reduction and is expected to shed light on other photocatalytic applications.展开更多
Materials with low thermal conductivity are applied extensively in energy management,and breaking the amorphous limits of thermal conductivity to solids has attracted widespread attention from scientists.Doping is a c...Materials with low thermal conductivity are applied extensively in energy management,and breaking the amorphous limits of thermal conductivity to solids has attracted widespread attention from scientists.Doping is a common strategy for achieving low thermal conductivity that can offer abundant scattering centers in which heavier dopants always result in lower phonon group velocities and lower thermal conductivities.However,the amount of equivalent heavyatom single dopant available is limited.Unfortunately,nonequivalent heavy dopants have finite solubility because of charge imbalance.Here,we propose a charge balance strategy for SnS by substituting Sn2+with Ag^(+)and heavy Bi^(3+),improving the doping limit of Ag from 2%to 3%.Ag and Bi codoping increases the point defect concentration and introduces abundant boundaries simultaneously,scattering the phonons at both the atomic scale and nanoscale.The thermal conductivity of Ag0.03Bi0.03Sn0.94S decreased to 0.535 W·m^(−1)·K^(−1)at room temperature and 0.388 W·m^(−1)·K^(−1)at 275°C,which is below the amorphous limit of 0.450 W·m^(−1)·K^(−1)for SnS.This strategy offers a simple way to enhance the doping limit and achieve ultralow thermal conductivity in solids below the amorphous limit without precise structural modification.展开更多
Solid non-conjugated polymers have long been regarded as insulators due to deficiency of delocalizedπelectrons along the molecular chain framework.Up to date,origin of insulating polymer regulated charge transfer has...Solid non-conjugated polymers have long been regarded as insulators due to deficiency of delocalizedπelectrons along the molecular chain framework.Up to date,origin of insulating polymer regulated charge transfer has not yet been uncovered.In this work,we unleash the root origin of charge transport capability of insulating polymer in photocatalysis.We ascertain that insulating polymer plays crucial roles in fine tuning of electronic structure of transition metal chalcogenides(TMCs),which mainly include altering surface electron density of TMCs for accelerating charge transport kinetics,triggering the generation of defect over TMCs for prolonging carrier lifetime,and acting as hole-trapping mediator for retarding charge recombination.These synergistic roles contribute to the charge transfer of insulating polymer.Our work opens a new vista of utilizing solid insulating polymers for maneuvering charge transfer toward solar energy conversion.展开更多
We take the contribution of all valence electrons into consideration and propose a new valence electrons equilibration method to calculate the equalized electronegativity including molecular electronegativity, group e...We take the contribution of all valence electrons into consideration and propose a new valence electrons equilibration method to calculate the equalized electronegativity including molecular electronegativity, group electronegativity, and atomic charge. The ionization potential of alkanes and mono-substituted alkanes, the chemical shift of 1H NMR, and the gas phase proton affinity of aliphatic amines, alcohols, and ethers were estimated. All the expressions have good correlations. Moreover, the Sanderson method and Bratsch method were modified on the basis of the valence electrons equilibration theory. The modified Sanderson method and modified Bratsch method are more effective than their original methods to estimate these properties.展开更多
Charge compensation plays a very important role in modifying the local atomic structure and moreover the spectroscopic property of an isolated luminescent center, and so has been widely adopted in phosphor designs. In...Charge compensation plays a very important role in modifying the local atomic structure and moreover the spectroscopic property of an isolated luminescent center, and so has been widely adopted in phosphor designs. In this work, we carry out first-principles calculations on various cases of Ce3+ centers in Ca3Sc2Si3O12 by considering the effects of the charge com- pensations related to N3-, Sc3+, Mn2+, Mg2+, and Na+. Firstly, the local structures around Ce3+ are optimized by using density functional theory calculations with supercell model. The 4f→5d transition energies of Ce3+ are then obtained from the CASSCF/CASPT2/RASSI-SO calculations performed on Ce3+-centered embedded clusters. The calculated energies support the previous assignments of the experimental spectra. Especially, a previously unclear peak is identified to be caused by Sc3+ substituting Si4+. The results show that the first-principles calculations can be used as an effective tool for predicting and interpreting spectroscopic properties of the phosphors.展开更多
The characteristics of electric charge and molecular weight distribution,oxidation-reduction regimes,e.g.Eh and amounts of organic reducing substances produced by milk vetch during anaerobic decomposition process,were...The characteristics of electric charge and molecular weight distribution,oxidation-reduction regimes,e.g.Eh and amounts of organic reducing substances produced by milk vetch during anaerobic decomposition process,were studied by using electrochemical methods.Interaction between soils and organic reducing substances was also observed.The results indicate that the organic reducing substances were mainly the organic compounds with negative and amphoteric charges,which were distributed in two groups at anodic peak potentials of 0.25 and 0.69 volt in differential pulse voltammograms,respectively.Their apparent molecular weights are all less than 700 daltons,in which those active in oxidation-reducion reaction were distributed in the fraction with apparent molecular weight less than 200 daltons.The organic reduction substances can be oxidized by manganese oxides in their interaction with soils.展开更多
The structural and electronic properties of TiC(110) surfaces are calculated using the first-principles total-energy plane-wave pseudopotential method based on density functional theory. The calculated results of st...The structural and electronic properties of TiC(110) surfaces are calculated using the first-principles total-energy plane-wave pseudopotential method based on density functional theory. The calculated results of structural relaxation and surface energy for TiC(110) slab indicate that slab with 7 layers shows bulk-like characteristic interiors, and the changes of slab occur on the outmost three layers, which shows that the relaxation only influences the top three layers. Meanwhile, the strong Ti—C covalent bonding can be found in the distribution of charge density on the (100) plane. The interlayer Ti—C chemical bonds are reinforced and the outermost interlayer distance is reduced as a result of the charge depletion in the vacuum and the charge accumulations in the interlayer region between the first and second layers. The surface energy of TiC(110) is calculated to be 3.53 J/m2.展开更多
Three kinds of triazine based organic molecules designed for thermally activated delayed fluorescence (TADF) emitters are investigated by first-principles calculations. An optimal Hartree-Fork (HF) method is adopt...Three kinds of triazine based organic molecules designed for thermally activated delayed fluorescence (TADF) emitters are investigated by first-principles calculations. An optimal Hartree-Fork (HF) method is adopted for the calculation of energy gap between the first singlet state (S1) and the first triplet state (T1). The natural transition orbital, the electron- hole (e-h) distribution and the e-h overlap diagram indicate that the S1 states for the three systems include both charge-transfer and some localized excitation component. Further quantitative analysis of the excitation property is performed by introducing the index Ar and the integral of e-h overlap S. It is found that symmetric geometry is a necessary condition for TADF emitters, which can provide more delocalized transition orbitals and consequently a small S1-T1 energy gap. Artful inserting aromatic groups between donors and acceptors can significantly enhance the oscillator strength. Finally, the energy state structures calculated with the optimal HF method is presented, which can provide basis for the study of the dynamics of excited states.展开更多
The electric double layer with the transmission of particles was presented based on the principle of electrochemistry.In accordance with this theory,the cavitation catalysis removal mechanism of ultrasonic-pulse elect...The electric double layer with the transmission of particles was presented based on the principle of electrochemistry.In accordance with this theory,the cavitation catalysis removal mechanism of ultrasonic-pulse electrochemical compound machining(UPECM) based on particles was proposed.The removal mechanism was a particular focus and was thus validated by experiments.The principles and experiments of UPECM were introduced,and the removal model of the UPECM based on the principles of UPECM was established.Furthermore,the effects of the material removal rate for the main processing parameters,including the particles size,the ultrasonic vibration amplitude,the pulse voltage and the minimum machining gap between the tool and the workpiece,were also studied through UPECM.The results show that the particles promote ultrasonic-pulse electrochemical compound machining and thus act as the catalyzer of UPECM.The results also indicate that the processing speed,machining accuracy and surface quality can be improved under UPECM compound machining.展开更多
Inspired by MXene nanosheets and their regulation of surface functional groups,a series of Ti_(2)C‐based single‐atom electrocatalysts(TM@Ti_(2)CT_(x),TM=V,Cr,Mn,Fe,Co,and Ni)with two dif‐ferent functional groups(T=...Inspired by MXene nanosheets and their regulation of surface functional groups,a series of Ti_(2)C‐based single‐atom electrocatalysts(TM@Ti_(2)CT_(x),TM=V,Cr,Mn,Fe,Co,and Ni)with two dif‐ferent functional groups(T=–O and–S)was designed.The CO_(2)RR catalytic performance was stud‐ied using well‐defined ab initio calculations.Our results show that the CO_(2) molecule can be more readily activated on TM@Ti_(2)CO_(2) than the TM@Ti_(2)CS_(2) surface.Bader charge analysis reveals that the Ti_(2)CO_(2) substrate is involved in the adsorption reaction,and enough electrons are injected into the 2π*u orbital of CO_(2),leading to a V‐shaped CO_(2) molecular configuration and partial negative charge distribution.The V‐shaped CO_(2) further reduces the difficulty of the first hydrogenation reac‐tion step.The calculatedΔG of the first hydrogenation reaction on TM@Ti_(2)CO_(2) was significantly lower than that of the TM@Ti_(2)CS_(2) counterpart.However,the subsequent CO_(2) reduction pathways show that the UL of the potential determining step on TM@Ti_(2)CS_(2) is smaller than that of TM@Ti_(2)CO_(2).Combining the advantages of both TM@Ti_(2)CS_(2) and TM@Ti_(2)CO_(2),we designed a mixed functional group surface with–O and–S to anchor TM atoms.The results show that Cr atoms an‐chored on the surface of mixed functional groups exhibit high catalytic activity for the selective production of CH4.This study opens an exciting new avenue for the rational design of highly selec‐tive MXene‐based single‐atom CO_(2)RR electrocatalysts.展开更多
Under the background of increasing energy crisis and global warming,semiconductor-based photocatalysis has received tremendous attention due to its potential application in green energy production,CO_(2) reduction and...Under the background of increasing energy crisis and global warming,semiconductor-based photocatalysis has received tremendous attention due to its potential application in green energy production,CO_(2) reduction and pollutant degradation.The photocatalytic activity of semiconductors,however,remains low due to issues like fast recombination of photo-generated electron-hole pairs,limited electron mobility,restricted optical absorption or insufficient active sites.Designing appropriate heterojunctions is proved to be a promising method to address most of these issues and thus to improve the photocatalytic performance.In this review,the working mechanism of various heterojunctions is presented systematically.The most recent advances of strategies in designing and preparing efficient heterojunction photocatalysts are further summarized and some perspectives on the future directions in this field are provided.展开更多
The structural and electronic properties of bulk and (001) plane of TiC were investigated by the first-principles total-energy pseudopotential method based on density functional theory.The calculated bulk properties i...The structural and electronic properties of bulk and (001) plane of TiC were investigated by the first-principles total-energy pseudopotential method based on density functional theory.The calculated bulk properties indicate that bonding nature in TiC is a combination of ionicity,covalency and metallicity,in which the Ti-C covalent bonding is the predominate one.The calculated results of structural relaxation and surface energy for TiC(001) slab indicate that slab with 7 layers shows bulk-like characteristic interiors,and the changes of slab occur on the outmost three layers,which shows that the relaxation only influences the top three layers.Meanwhile,the strong Ti-C covalent bonding can be found in the distribution of charge density on the (110) and (001) planes.Ti-C covalent bonding is enhanced by the charge depletion and accumulation in the vacuum and the interlayer region between top two atomic layers.展开更多
A novel 3 D bismuth-organic framework(called Bi-TBAPy) single crystal was synthesized by employing 1,3,6,8-tetrakis(p-benzoic acid)pyrene(H4TBAPy) as an organic linker. The study demonstrates that the Bi-TBAPy not onl...A novel 3 D bismuth-organic framework(called Bi-TBAPy) single crystal was synthesized by employing 1,3,6,8-tetrakis(p-benzoic acid)pyrene(H4TBAPy) as an organic linker. The study demonstrates that the Bi-TBAPy not only possesses good chemical stability and suitable band edge positions for promising photocatalytic H2 evolution, but it also exhibits a typical ligand-to-metal charge transfer for favorable charge separation. The photocatalytic H2 evolution rates on the as-obtained Bi-TBAPy with different cocatalysts modified were examined with triethanolamine as the sacrificial reagent. Based on this, the hydrogen evolution rate of 140 μmol h-1 g-1 was obtained on the optimized sample with a loading of 2 wt% Pt as a cocatalyst. To the best of our knowledge, this is the first bismuth-based metal-organic framework(MOF) that functions as an effective photocatalyst for photocatalytic water reduction. Our study not only adds a new member to the family of photocatalyst materials, but also reveals the importance of cocatalyst modification in improving photocatalytic activity of MOFs.展开更多
Photocatalytic method has been intensively explored for Cr(VI)reduction owing to its efficient and environmentally friendly natures.In order to obtain a high efficiency in practical application,efficient photocatalyst...Photocatalytic method has been intensively explored for Cr(VI)reduction owing to its efficient and environmentally friendly natures.In order to obtain a high efficiency in practical application,efficient photocatalysts need to be developed.Here,ZnIn2S4/SnS2 with a three-dimensional(3D)heterostructure was prepared by a hydrothermal method and its photocatalytic performance in Cr(VI)reduction was investigated.When the mass ratio of SnS2 to ZnIn2S4 is 1:10,the ZnIn2S4/SnS2 composite exhibits the highest photocatalytic activity with 100%efficiency for Cr(VI)(50 mg/L)reduction within 70 min under visible-light irradiation,which is much higher than those of pure ZnIn2S4 and SnS2.The enhanced charge separation and the light absorption have been confirmed from the photoluminescence and UV-vis absorption spectra to be the two reasons for the increased activity towards photocatalytic Cr(VI)reduction.In addition,after three cycles of testing,no obvious degradation is observed with the 3D heterostructured ZnIn2S4/SnS2,which maintains a good photocatalytic stability.展开更多
Obtaining a detailed understanding of the surface modification of supports is crucial;however,it is a challenging task for the development and large-scale fabrication of supported electrocatalysts that can be used as ...Obtaining a detailed understanding of the surface modification of supports is crucial;however,it is a challenging task for the development and large-scale fabrication of supported electrocatalysts that can be used as alternatives to Pt-based catalysts for the oxygen reduction reaction(ORR).In this study,commercial silicon carbide(SiC)was modified through surface oxidization(O-SiC)to support the use of Pd nanoparticles(Pd NPs)as electrocatalysts for ORR.The obtained Pd/O-SiC catalysts exhibited better ORR activity,stronger durability,and higher resistance to methanol poisoning than that exhibited by commercial Pt/C.The role of the support in enhancing the ORR performance,especially the oxidization of SiC surfaces,was discussed in detail based on the experimental characterizations and density functional theory calculations.The underlying mechanism of the superior ORR performance of Pd/O-SiC catalysts was attributed to the charge transfer from SiC_(x)O_(y)to Pd NPs on the surfaces of SiC and the strong metal–support interactions(SMSIs)between Pd and SiC_(x)O_(y).The charge transfer enhanced the ORR activity by inducing electron-rich Pd,increased the adsorption of the key intermediate OOH,and decreased the Gibbs free energy of the critical ORR step.Furthermore,SMSIs enhanced the ORR stability of the Pd/O-SiC catalyst.This study provided a facile route for designing and developing highly active Pd-based ORR electrocatalysts.展开更多
Although CO_(2)photoreduction is a promising method for solar‐to‐fuel conversion,it suffers from low charge transfer efficiency of the photocatalysts.To improve the CO_(2)photoreduction performance,introduction of e...Although CO_(2)photoreduction is a promising method for solar‐to‐fuel conversion,it suffers from low charge transfer efficiency of the photocatalysts.To improve the CO_(2)photoreduction performance,introduction of electron‐accumulated materials on the photocatalyst surface is considered an effective method.In this study,the Bi_(19)S_(27)Br_(3)/BiOBr composites were designed and synthesized.The Bi19S27Br3 nanorod in this photocatalytic system acts as an electron‐accumulated active site for extracting the photogenerated electrons on the BiOBr surface and for effectively activating the CO2 molecules.As a result,Bi_(19)S_(27)Br_(3)/BiOBr composites exhibit the higher charge carrier transfer efficiency and further improves the CO_(2)photoreduction performance relative to that of pure Bi_(19)S_(27)Br_(3)and BiOBr.The rate of CO formation using Bi_(19)S_(27)Br_(3)/BiOBr‐5 is about 8.74 and 2.40 times that using Bi_(19)S_(27)Br_(3)and BiOBr,respectively.This work provides new insights for the application of Bi_(19)S_(27)Br_(3)as an electron‐accumulating site for achieving high photocatalytic CO2 reduction performance in the future.展开更多
文摘Metal halide perovskite(MHP)has become one of the most promising materials for photocatalytic CO_(2) reduction owing to the wide light absorption range,negative conduction band position and high reduction ability.However,photoreduction of CO_(2) by MHP remains a challenge because of the slow charge separation and transfer.Herein,a cobalt single-atom modified nitrogen-doped graphene(Co-NG)cocatalyst is prepared for enhanced photocatalytic CO_(2) reduction of bismuth-based MHP Cs_(3)Bi_(2)Br_(9).The optimal Cs_(3)Bi_(2)Br_(9)/Co-NG composite exhibits the CO production rate of 123.16μmol g^(-1)h^(-1),which is 17.3 times higher than that of Cs_(3)Bi_(2)Br_(9).Moreover,the Cs_(3)Bi_(2)Br_(9)/Co-NG composite photocatalyst exhibits nearly 100% CO selectivity as well as impressive long-term stability.Charge carrier dynamic characterizations such as Kelvin probe force microscopy(KPFM),single-particle PL microscope and transient absorption(TA)spectroscopy demonstrate the vital role of Co-NG cocatalyst in accelerating the transfer and separation of photogenerated charges and improving photocatalytic performance.The reaction mechanism has been demonstrated by in situ diffuse reflectance infrared Fourier-transform spectroscopy measurement.In addition,in situ X-ray photoelectron spectroscopy test and theoretical calculation reveal the reaction reactive sites and reaction energy barriers,demonstrating that the introduction of Co-NG promotes the formation of ^(*)COOH intermediate,providing sufficient evidence for the highly selective generation of CO.This work provides an effective single-atom-based cocatalyst modification strategy for photocatalytic CO_(2) reduction and is expected to shed light on other photocatalytic applications.
基金supported by the CAS Project for Young Scientists in Basic Research(YSBR-070)the National Natural Science Foundation of China(21925110,21890750,U2032161,12147105)+8 种基金the USTC Research Funds of the Double First-Class Initiative(YD2060002004)the National Key Research and Development Program of China(2022YFA1203600,2022YFA1203601,2022YFA1203602)the Natural Science Foundation of China-Anhui Joint Fund(U23A20121)the Outstanding Youth Foundation of Anhui Province(2208085J14)the Anhui Provincial Key Research and Development Project(202004a050200760)the Key R&D Program of Shandong Province(2021CXGC010302)the Users with Excellence Project of Hefei Science Center CAS(2021HSC-UE004)the Fellowship of the China Postdoctoral Science Foundation(2022M710141)the open foundation of the Key Laboratory of the Engineering Research Center of Building Energy Efficiency Control and Evaluation,Ministry of Education(AHJZNX-2023-04).
文摘Materials with low thermal conductivity are applied extensively in energy management,and breaking the amorphous limits of thermal conductivity to solids has attracted widespread attention from scientists.Doping is a common strategy for achieving low thermal conductivity that can offer abundant scattering centers in which heavier dopants always result in lower phonon group velocities and lower thermal conductivities.However,the amount of equivalent heavyatom single dopant available is limited.Unfortunately,nonequivalent heavy dopants have finite solubility because of charge imbalance.Here,we propose a charge balance strategy for SnS by substituting Sn2+with Ag^(+)and heavy Bi^(3+),improving the doping limit of Ag from 2%to 3%.Ag and Bi codoping increases the point defect concentration and introduces abundant boundaries simultaneously,scattering the phonons at both the atomic scale and nanoscale.The thermal conductivity of Ag0.03Bi0.03Sn0.94S decreased to 0.535 W·m^(−1)·K^(−1)at room temperature and 0.388 W·m^(−1)·K^(−1)at 275°C,which is below the amorphous limit of 0.450 W·m^(−1)·K^(−1)for SnS.This strategy offers a simple way to enhance the doping limit and achieve ultralow thermal conductivity in solids below the amorphous limit without precise structural modification.
文摘Solid non-conjugated polymers have long been regarded as insulators due to deficiency of delocalizedπelectrons along the molecular chain framework.Up to date,origin of insulating polymer regulated charge transfer has not yet been uncovered.In this work,we unleash the root origin of charge transport capability of insulating polymer in photocatalysis.We ascertain that insulating polymer plays crucial roles in fine tuning of electronic structure of transition metal chalcogenides(TMCs),which mainly include altering surface electron density of TMCs for accelerating charge transport kinetics,triggering the generation of defect over TMCs for prolonging carrier lifetime,and acting as hole-trapping mediator for retarding charge recombination.These synergistic roles contribute to the charge transfer of insulating polymer.Our work opens a new vista of utilizing solid insulating polymers for maneuvering charge transfer toward solar energy conversion.
文摘We take the contribution of all valence electrons into consideration and propose a new valence electrons equilibration method to calculate the equalized electronegativity including molecular electronegativity, group electronegativity, and atomic charge. The ionization potential of alkanes and mono-substituted alkanes, the chemical shift of 1H NMR, and the gas phase proton affinity of aliphatic amines, alcohols, and ethers were estimated. All the expressions have good correlations. Moreover, the Sanderson method and Bratsch method were modified on the basis of the valence electrons equilibration theory. The modified Sanderson method and modified Bratsch method are more effective than their original methods to estimate these properties.
基金This work was supported by the National Key Basic Research Program of China (No.2013CB921800), the National Natural Science Foundation of China (No.11374291, No.11311120047, No.11274299, No.11447197, and No.11204292), the Fundamen- tal Research Funds for the Central Universities (No.WK20304200), the Anhui Provincial Natural Science Foundation (No.1508085QA09). The numerical calculations have been partially done on the super- computing system in the Supercomputing Center of University of Science and Technology of China.
文摘Charge compensation plays a very important role in modifying the local atomic structure and moreover the spectroscopic property of an isolated luminescent center, and so has been widely adopted in phosphor designs. In this work, we carry out first-principles calculations on various cases of Ce3+ centers in Ca3Sc2Si3O12 by considering the effects of the charge com- pensations related to N3-, Sc3+, Mn2+, Mg2+, and Na+. Firstly, the local structures around Ce3+ are optimized by using density functional theory calculations with supercell model. The 4f→5d transition energies of Ce3+ are then obtained from the CASSCF/CASPT2/RASSI-SO calculations performed on Ce3+-centered embedded clusters. The calculated energies support the previous assignments of the experimental spectra. Especially, a previously unclear peak is identified to be caused by Sc3+ substituting Si4+. The results show that the first-principles calculations can be used as an effective tool for predicting and interpreting spectroscopic properties of the phosphors.
文摘The characteristics of electric charge and molecular weight distribution,oxidation-reduction regimes,e.g.Eh and amounts of organic reducing substances produced by milk vetch during anaerobic decomposition process,were studied by using electrochemical methods.Interaction between soils and organic reducing substances was also observed.The results indicate that the organic reducing substances were mainly the organic compounds with negative and amphoteric charges,which were distributed in two groups at anodic peak potentials of 0.25 and 0.69 volt in differential pulse voltammograms,respectively.Their apparent molecular weights are all less than 700 daltons,in which those active in oxidation-reducion reaction were distributed in the fraction with apparent molecular weight less than 200 daltons.The organic reduction substances can be oxidized by manganese oxides in their interaction with soils.
基金Project (200902554) supported by National Post-doctor Foundation, ChinaProject (200802015) supported by the Post-Doctor Foundation of Shandong Province, China
文摘The structural and electronic properties of TiC(110) surfaces are calculated using the first-principles total-energy plane-wave pseudopotential method based on density functional theory. The calculated results of structural relaxation and surface energy for TiC(110) slab indicate that slab with 7 layers shows bulk-like characteristic interiors, and the changes of slab occur on the outmost three layers, which shows that the relaxation only influences the top three layers. Meanwhile, the strong Ti—C covalent bonding can be found in the distribution of charge density on the (100) plane. The interlayer Ti—C chemical bonds are reinforced and the outermost interlayer distance is reduced as a result of the charge depletion in the vacuum and the charge accumulations in the interlayer region between the first and second layers. The surface energy of TiC(110) is calculated to be 3.53 J/m2.
文摘Three kinds of triazine based organic molecules designed for thermally activated delayed fluorescence (TADF) emitters are investigated by first-principles calculations. An optimal Hartree-Fork (HF) method is adopted for the calculation of energy gap between the first singlet state (S1) and the first triplet state (T1). The natural transition orbital, the electron- hole (e-h) distribution and the e-h overlap diagram indicate that the S1 states for the three systems include both charge-transfer and some localized excitation component. Further quantitative analysis of the excitation property is performed by introducing the index Ar and the integral of e-h overlap S. It is found that symmetric geometry is a necessary condition for TADF emitters, which can provide more delocalized transition orbitals and consequently a small S1-T1 energy gap. Artful inserting aromatic groups between donors and acceptors can significantly enhance the oscillator strength. Finally, the energy state structures calculated with the optimal HF method is presented, which can provide basis for the study of the dynamics of excited states.
基金Project(51275116)supported by the National Natural Science Foundation of ChinaProject(2012ZE77010)supported by the Aero Science Foundation of ChinaProject(LBH-Q11090)supported by the Postdoctoral Science Research Development Foundation of Heilongjiang Province,China
文摘The electric double layer with the transmission of particles was presented based on the principle of electrochemistry.In accordance with this theory,the cavitation catalysis removal mechanism of ultrasonic-pulse electrochemical compound machining(UPECM) based on particles was proposed.The removal mechanism was a particular focus and was thus validated by experiments.The principles and experiments of UPECM were introduced,and the removal model of the UPECM based on the principles of UPECM was established.Furthermore,the effects of the material removal rate for the main processing parameters,including the particles size,the ultrasonic vibration amplitude,the pulse voltage and the minimum machining gap between the tool and the workpiece,were also studied through UPECM.The results show that the particles promote ultrasonic-pulse electrochemical compound machining and thus act as the catalyzer of UPECM.The results also indicate that the processing speed,machining accuracy and surface quality can be improved under UPECM compound machining.
文摘Inspired by MXene nanosheets and their regulation of surface functional groups,a series of Ti_(2)C‐based single‐atom electrocatalysts(TM@Ti_(2)CT_(x),TM=V,Cr,Mn,Fe,Co,and Ni)with two dif‐ferent functional groups(T=–O and–S)was designed.The CO_(2)RR catalytic performance was stud‐ied using well‐defined ab initio calculations.Our results show that the CO_(2) molecule can be more readily activated on TM@Ti_(2)CO_(2) than the TM@Ti_(2)CS_(2) surface.Bader charge analysis reveals that the Ti_(2)CO_(2) substrate is involved in the adsorption reaction,and enough electrons are injected into the 2π*u orbital of CO_(2),leading to a V‐shaped CO_(2) molecular configuration and partial negative charge distribution.The V‐shaped CO_(2) further reduces the difficulty of the first hydrogenation reac‐tion step.The calculatedΔG of the first hydrogenation reaction on TM@Ti_(2)CO_(2) was significantly lower than that of the TM@Ti_(2)CS_(2) counterpart.However,the subsequent CO_(2) reduction pathways show that the UL of the potential determining step on TM@Ti_(2)CS_(2) is smaller than that of TM@Ti_(2)CO_(2).Combining the advantages of both TM@Ti_(2)CS_(2) and TM@Ti_(2)CO_(2),we designed a mixed functional group surface with–O and–S to anchor TM atoms.The results show that Cr atoms an‐chored on the surface of mixed functional groups exhibit high catalytic activity for the selective production of CH4.This study opens an exciting new avenue for the rational design of highly selec‐tive MXene‐based single‐atom CO_(2)RR electrocatalysts.
文摘Under the background of increasing energy crisis and global warming,semiconductor-based photocatalysis has received tremendous attention due to its potential application in green energy production,CO_(2) reduction and pollutant degradation.The photocatalytic activity of semiconductors,however,remains low due to issues like fast recombination of photo-generated electron-hole pairs,limited electron mobility,restricted optical absorption or insufficient active sites.Designing appropriate heterojunctions is proved to be a promising method to address most of these issues and thus to improve the photocatalytic performance.In this review,the working mechanism of various heterojunctions is presented systematically.The most recent advances of strategies in designing and preparing efficient heterojunction photocatalysts are further summarized and some perspectives on the future directions in this field are provided.
基金Project(200802015) supported by Post-doctoral Foundation of Shandong Province,ChinaProject(50625101) supported by the National Natural Science Foundation for Distinguished Young Scholars of China
文摘The structural and electronic properties of bulk and (001) plane of TiC were investigated by the first-principles total-energy pseudopotential method based on density functional theory.The calculated bulk properties indicate that bonding nature in TiC is a combination of ionicity,covalency and metallicity,in which the Ti-C covalent bonding is the predominate one.The calculated results of structural relaxation and surface energy for TiC(001) slab indicate that slab with 7 layers shows bulk-like characteristic interiors,and the changes of slab occur on the outmost three layers,which shows that the relaxation only influences the top three layers.Meanwhile,the strong Ti-C covalent bonding can be found in the distribution of charge density on the (110) and (001) planes.Ti-C covalent bonding is enhanced by the charge depletion and accumulation in the vacuum and the interlayer region between top two atomic layers.
基金supported by the National Natural Science Foundation of China(21633009,21522306,21633010)DICP&QIBEBT(UN201805)the Dalian Science Foundation for Distinguished Young Scholars(2017RJ02)~~
文摘A novel 3 D bismuth-organic framework(called Bi-TBAPy) single crystal was synthesized by employing 1,3,6,8-tetrakis(p-benzoic acid)pyrene(H4TBAPy) as an organic linker. The study demonstrates that the Bi-TBAPy not only possesses good chemical stability and suitable band edge positions for promising photocatalytic H2 evolution, but it also exhibits a typical ligand-to-metal charge transfer for favorable charge separation. The photocatalytic H2 evolution rates on the as-obtained Bi-TBAPy with different cocatalysts modified were examined with triethanolamine as the sacrificial reagent. Based on this, the hydrogen evolution rate of 140 μmol h-1 g-1 was obtained on the optimized sample with a loading of 2 wt% Pt as a cocatalyst. To the best of our knowledge, this is the first bismuth-based metal-organic framework(MOF) that functions as an effective photocatalyst for photocatalytic water reduction. Our study not only adds a new member to the family of photocatalyst materials, but also reveals the importance of cocatalyst modification in improving photocatalytic activity of MOFs.
基金the support of the National Natural Science Foundation of China (51702087 and 21673066)~~
文摘Photocatalytic method has been intensively explored for Cr(VI)reduction owing to its efficient and environmentally friendly natures.In order to obtain a high efficiency in practical application,efficient photocatalysts need to be developed.Here,ZnIn2S4/SnS2 with a three-dimensional(3D)heterostructure was prepared by a hydrothermal method and its photocatalytic performance in Cr(VI)reduction was investigated.When the mass ratio of SnS2 to ZnIn2S4 is 1:10,the ZnIn2S4/SnS2 composite exhibits the highest photocatalytic activity with 100%efficiency for Cr(VI)(50 mg/L)reduction within 70 min under visible-light irradiation,which is much higher than those of pure ZnIn2S4 and SnS2.The enhanced charge separation and the light absorption have been confirmed from the photoluminescence and UV-vis absorption spectra to be the two reasons for the increased activity towards photocatalytic Cr(VI)reduction.In addition,after three cycles of testing,no obvious degradation is observed with the 3D heterostructured ZnIn2S4/SnS2,which maintains a good photocatalytic stability.
文摘Obtaining a detailed understanding of the surface modification of supports is crucial;however,it is a challenging task for the development and large-scale fabrication of supported electrocatalysts that can be used as alternatives to Pt-based catalysts for the oxygen reduction reaction(ORR).In this study,commercial silicon carbide(SiC)was modified through surface oxidization(O-SiC)to support the use of Pd nanoparticles(Pd NPs)as electrocatalysts for ORR.The obtained Pd/O-SiC catalysts exhibited better ORR activity,stronger durability,and higher resistance to methanol poisoning than that exhibited by commercial Pt/C.The role of the support in enhancing the ORR performance,especially the oxidization of SiC surfaces,was discussed in detail based on the experimental characterizations and density functional theory calculations.The underlying mechanism of the superior ORR performance of Pd/O-SiC catalysts was attributed to the charge transfer from SiC_(x)O_(y)to Pd NPs on the surfaces of SiC and the strong metal–support interactions(SMSIs)between Pd and SiC_(x)O_(y).The charge transfer enhanced the ORR activity by inducing electron-rich Pd,increased the adsorption of the key intermediate OOH,and decreased the Gibbs free energy of the critical ORR step.Furthermore,SMSIs enhanced the ORR stability of the Pd/O-SiC catalyst.This study provided a facile route for designing and developing highly active Pd-based ORR electrocatalysts.
文摘Although CO_(2)photoreduction is a promising method for solar‐to‐fuel conversion,it suffers from low charge transfer efficiency of the photocatalysts.To improve the CO_(2)photoreduction performance,introduction of electron‐accumulated materials on the photocatalyst surface is considered an effective method.In this study,the Bi_(19)S_(27)Br_(3)/BiOBr composites were designed and synthesized.The Bi19S27Br3 nanorod in this photocatalytic system acts as an electron‐accumulated active site for extracting the photogenerated electrons on the BiOBr surface and for effectively activating the CO2 molecules.As a result,Bi_(19)S_(27)Br_(3)/BiOBr composites exhibit the higher charge carrier transfer efficiency and further improves the CO_(2)photoreduction performance relative to that of pure Bi_(19)S_(27)Br_(3)and BiOBr.The rate of CO formation using Bi_(19)S_(27)Br_(3)/BiOBr‐5 is about 8.74 and 2.40 times that using Bi_(19)S_(27)Br_(3)and BiOBr,respectively.This work provides new insights for the application of Bi_(19)S_(27)Br_(3)as an electron‐accumulating site for achieving high photocatalytic CO2 reduction performance in the future.