This study presents the simulated aerosol spatiotemporal characteristics over the Tibetan Plateau(TP)with a newly developed coupled aerosol-climate model(FGOALS-f3-L).The aerosol properties are simulated over the TP f...This study presents the simulated aerosol spatiotemporal characteristics over the Tibetan Plateau(TP)with a newly developed coupled aerosol-climate model(FGOALS-f3-L).The aerosol properties are simulated over the TP for the period 2002-11.The results indicate that soil dust,sulfate,and carbonaceous aerosols(black carbon(BC),organic carbon(OC)and BC/OC)account for 53.6%,32.2%,and 14.2%of the total aerosol mass over the TP,respectively.The simulated aerosol surface mass concentrations and aerosol optical depths(AODs)are evaluated with ground-based and satellite observations,respectively.Underestimations of the aerosol surface mass concentration are found at the Lhasa site,especially for BC and OC.The spatial distribution and interannual variation of AOD are consistent with MODIS observations,with the RMSE of 0.081 and bias of 0.036.Due to the uncertainty of the parameterization of dust emissions,the model’s performance in summer and autumn is much better than that in spring.展开更多
基金financially supported by the National Natural Science Foundation of China grant Nos.4187513341590875+2 种基金41605083the Youth Innovation Promotion Association CAS grant No.2020078the Strategic Priority Research Program of the Chinese Academy of Sciences grant No.XDA2006010302。
文摘This study presents the simulated aerosol spatiotemporal characteristics over the Tibetan Plateau(TP)with a newly developed coupled aerosol-climate model(FGOALS-f3-L).The aerosol properties are simulated over the TP for the period 2002-11.The results indicate that soil dust,sulfate,and carbonaceous aerosols(black carbon(BC),organic carbon(OC)and BC/OC)account for 53.6%,32.2%,and 14.2%of the total aerosol mass over the TP,respectively.The simulated aerosol surface mass concentrations and aerosol optical depths(AODs)are evaluated with ground-based and satellite observations,respectively.Underestimations of the aerosol surface mass concentration are found at the Lhasa site,especially for BC and OC.The spatial distribution and interannual variation of AOD are consistent with MODIS observations,with the RMSE of 0.081 and bias of 0.036.Due to the uncertainty of the parameterization of dust emissions,the model’s performance in summer and autumn is much better than that in spring.