This article reviewed the beneficial effects of moderate voluntary physical exercise on brain health according to the studies on humans and animals, which includes improving psychological status and cognitive function...This article reviewed the beneficial effects of moderate voluntary physical exercise on brain health according to the studies on humans and animals, which includes improving psychological status and cognitive function, enhancing psychological well-being, decreasing the risks of Alzheimer's disease (AD) and dementia, and promoting the effects of antidepressant and anxiolytic. The possible underlying neurobiological mechanisms are involved up-active and down-active pathways. The up-active pathway is associated with enhancements of several neurotransmitters systems afferent to hippocampus, including norepinephrine (NE), serotonin (5-Hydroxytryptamine, 5-HT), acetylcholine (ACh) and γ-aminobutyric acid (GABA). The down-active pathway is mainly concerned with up-regulation of the brain-derived neurotrophic factor (BDNF) and neurogenesis. It is suggested that NE activation via β-adrenergic receptors may be essential for exercise-induced BDNF up-regulation. The possible intracellular signaling pathways of NE-mediated BDNF up-expression may be involved in GPCR-MAPK-PI-3K crosstalk and positive feedback.展开更多
Hemorrhage or hypotension induces extensive Foslike immunoreactivity in the magnocellular neurosecretory cells in the supraoptic nucleus of the hypothalamus in rat, especially in the vasopressin neurons. The present s...Hemorrhage or hypotension induces extensive Foslike immunoreactivity in the magnocellular neurosecretory cells in the supraoptic nucleus of the hypothalamus in rat, especially in the vasopressin neurons. The present study was to explore the neurotransmitter mediating this effect. Microinfusion of the alpha-adrenergic blocker into the supraoptic nucleus reduced the hypotension-induced Fos, whereas beta-antagonist did not affect it significantly. Alpha1- and alpha2-antagonist, prazosin and yohimbine,both reduced the Fos-positive cell counts. However, the effective dosage of yohimbine was much larger. Alpha1-agonist, methoxamine, induced abundant Fos-like immnnoreactivity in the vasopressin cells in this nucleus,while beta-and alpha2-agonist did not elicit such effect.Administration of the noradrenergic re-uptake inhibitor,desipramine, to this nucleus to locally accumulate the spontaneously released noradrenaline from the nerve terminals also induced Fos expression, mostly in the vasopressin cells.展开更多
Physical performance is determined both by biophysical and physiological limitations and behav- ioral characteristic, specifically motivation. We applied an experimental evolution approach com- bined with pharmacologi...Physical performance is determined both by biophysical and physiological limitations and behav- ioral characteristic, specifically motivation. We applied an experimental evolution approach com- bined with pharmacological manipulation to test the hypothesis that evolution of increased aerobic exercise performance can be triggered by evolution of motivation to undertake physical activity. We used a unique model system: bank voles from A lines, selected for high swim-induced aerobic metabolism (VO2swim), which achieved a 61% higher mass-adjusted VO2swim than those from un- selected C lines. Because the voles could float on the water surface with only a minimum activity, the maximum rate of metabolism achieved in that test depended not only on their aerobic capacity, but also on motivation to undertake intensive activity. Therefore, we hypothesized that signaling of neurotransmitters putatively involved in regulating physical activity (dopamine and noradrenaline) had changed in response to selection. We measured VO2swim after intraperitoneal injections of sa- line or the norepinephrine and dopamine reuptake inhibitor bupropion (20 mg/kg or 30 mg/kg). Additionally, we measured forced-exercise VO2 (VO2max). In C lines, VO2swim (mass-adjusted mean ± standard error (SE): 4.0 ± 0.1 mLO2/min) was lower than VO2max (5.0 ± 0.1 mLO2/min), but in A lines VO2swim (6.0 ± 0.1 mLO2/min) was as high as VO2max (6.0 ± 0.1 mLO2/min). Thus, the selection effectively changed both the physiological-physical performance limit and mechanisms responsible for the willingness to undertake vigorous locomotor activity. Surprisingly, the drug had no effect on the achieved level of VO2swim. Thus, the results did not allow firm conclusions concerning involvement of these neurotransmitters in evolution of increased aerobic exercise performance in the experimental evolution model system.展开更多
Aggression is a common behavioral strategy employed by animals to secure limited resources, but must be applied with restraint to limit potential costs including injury. How animals make the adap- tive decision to fig...Aggression is a common behavioral strategy employed by animals to secure limited resources, but must be applied with restraint to limit potential costs including injury. How animals make the adap- tive decision to fight or flee is barely known. Here, we review our work on crickets that reveals the roles of biogenic amines, primarily octopamine (the insect analog of noradrenaline) and nitric oxide (NO). Using aminergic drugs, we found that amines are not essential for actually initiating aggres- sion. However, octopamine is necessary for mediating the aggression-promoting effects of poten- tially rewarding experiences including stimulation with a male antenna, physical exertion, winning, and resource possession. Hence, octopamine can be considered as the motivational component of aggression. Imposed handicaps that impede aggressive signaling revealed that the agonistic actions of an opponent perceived during fighting act to reduce aggression, and that crickets make the deci- sion to flee the moment the accumulated sum of such aversive experiences exceeds some critical level. Treatment with nitridergic drugs revealed that the impact of the opponent's aggressive actions is mediated by NO. NO acts to suppress aggression by promoting the tendency to flee and is primarily responsible for the depressed aggressiveness of subordinates after social defeat. Octopamine and dopamine can each restore aggression in subordinates, but only dopamine is necessary for normal recovery. The role of serotonin remains unclear, and is discussed. We conclude that octopamine and NO control the decision to fight or flee by mediating the effects of potentially rewarding and aversive experiences, respectively.展开更多
基金the National Natural Science Fundation of China (No. 30570895,No. 30700389)
文摘This article reviewed the beneficial effects of moderate voluntary physical exercise on brain health according to the studies on humans and animals, which includes improving psychological status and cognitive function, enhancing psychological well-being, decreasing the risks of Alzheimer's disease (AD) and dementia, and promoting the effects of antidepressant and anxiolytic. The possible underlying neurobiological mechanisms are involved up-active and down-active pathways. The up-active pathway is associated with enhancements of several neurotransmitters systems afferent to hippocampus, including norepinephrine (NE), serotonin (5-Hydroxytryptamine, 5-HT), acetylcholine (ACh) and γ-aminobutyric acid (GABA). The down-active pathway is mainly concerned with up-regulation of the brain-derived neurotrophic factor (BDNF) and neurogenesis. It is suggested that NE activation via β-adrenergic receptors may be essential for exercise-induced BDNF up-regulation. The possible intracellular signaling pathways of NE-mediated BDNF up-expression may be involved in GPCR-MAPK-PI-3K crosstalk and positive feedback.
文摘Hemorrhage or hypotension induces extensive Foslike immunoreactivity in the magnocellular neurosecretory cells in the supraoptic nucleus of the hypothalamus in rat, especially in the vasopressin neurons. The present study was to explore the neurotransmitter mediating this effect. Microinfusion of the alpha-adrenergic blocker into the supraoptic nucleus reduced the hypotension-induced Fos, whereas beta-antagonist did not affect it significantly. Alpha1- and alpha2-antagonist, prazosin and yohimbine,both reduced the Fos-positive cell counts. However, the effective dosage of yohimbine was much larger. Alpha1-agonist, methoxamine, induced abundant Fos-like immnnoreactivity in the vasopressin cells in this nucleus,while beta-and alpha2-agonist did not elicit such effect.Administration of the noradrenergic re-uptake inhibitor,desipramine, to this nucleus to locally accumulate the spontaneously released noradrenaline from the nerve terminals also induced Fos expression, mostly in the vasopressin cells.
文摘Physical performance is determined both by biophysical and physiological limitations and behav- ioral characteristic, specifically motivation. We applied an experimental evolution approach com- bined with pharmacological manipulation to test the hypothesis that evolution of increased aerobic exercise performance can be triggered by evolution of motivation to undertake physical activity. We used a unique model system: bank voles from A lines, selected for high swim-induced aerobic metabolism (VO2swim), which achieved a 61% higher mass-adjusted VO2swim than those from un- selected C lines. Because the voles could float on the water surface with only a minimum activity, the maximum rate of metabolism achieved in that test depended not only on their aerobic capacity, but also on motivation to undertake intensive activity. Therefore, we hypothesized that signaling of neurotransmitters putatively involved in regulating physical activity (dopamine and noradrenaline) had changed in response to selection. We measured VO2swim after intraperitoneal injections of sa- line or the norepinephrine and dopamine reuptake inhibitor bupropion (20 mg/kg or 30 mg/kg). Additionally, we measured forced-exercise VO2 (VO2max). In C lines, VO2swim (mass-adjusted mean ± standard error (SE): 4.0 ± 0.1 mLO2/min) was lower than VO2max (5.0 ± 0.1 mLO2/min), but in A lines VO2swim (6.0 ± 0.1 mLO2/min) was as high as VO2max (6.0 ± 0.1 mLO2/min). Thus, the selection effectively changed both the physiological-physical performance limit and mechanisms responsible for the willingness to undertake vigorous locomotor activity. Surprisingly, the drug had no effect on the achieved level of VO2swim. Thus, the results did not allow firm conclusions concerning involvement of these neurotransmitters in evolution of increased aerobic exercise performance in the experimental evolution model system.
文摘Aggression is a common behavioral strategy employed by animals to secure limited resources, but must be applied with restraint to limit potential costs including injury. How animals make the adap- tive decision to fight or flee is barely known. Here, we review our work on crickets that reveals the roles of biogenic amines, primarily octopamine (the insect analog of noradrenaline) and nitric oxide (NO). Using aminergic drugs, we found that amines are not essential for actually initiating aggres- sion. However, octopamine is necessary for mediating the aggression-promoting effects of poten- tially rewarding experiences including stimulation with a male antenna, physical exertion, winning, and resource possession. Hence, octopamine can be considered as the motivational component of aggression. Imposed handicaps that impede aggressive signaling revealed that the agonistic actions of an opponent perceived during fighting act to reduce aggression, and that crickets make the deci- sion to flee the moment the accumulated sum of such aversive experiences exceeds some critical level. Treatment with nitridergic drugs revealed that the impact of the opponent's aggressive actions is mediated by NO. NO acts to suppress aggression by promoting the tendency to flee and is primarily responsible for the depressed aggressiveness of subordinates after social defeat. Octopamine and dopamine can each restore aggression in subordinates, but only dopamine is necessary for normal recovery. The role of serotonin remains unclear, and is discussed. We conclude that octopamine and NO control the decision to fight or flee by mediating the effects of potentially rewarding and aversive experiences, respectively.