We demonstrate that it is possible to form non-phospholipid fluid bilayers in aqueous milieu with a mixture of palmitic acid (PA),cholesterol (Chol),and cholesterol sulfate (Schol) in a molar proportion of 30/28/42.Th...We demonstrate that it is possible to form non-phospholipid fluid bilayers in aqueous milieu with a mixture of palmitic acid (PA),cholesterol (Chol),and cholesterol sulfate (Schol) in a molar proportion of 30/28/42.These self-assemblies are shown to be bilayers in the liquid ordered phase.They are stable between pH 5 and 9.Over this pH range,the protonation/deprotonation of PA carboxylic group is observed but this change does not appear to alter the stability of these bilayers,a behavior contrasting with that observed for binary mixtures of PA/Chol,and PA/Schol.The multilamellar dispersions formed spontaneously from the PA/Chol/Schol mixture could be successfully extruded to form Large Unilamellar Vesicles (LUVs).These LUVs show interesting permeability properties,linked with their high sterol content.These non-phospholipid liposomes can sustain a pH gradient (pH internal 8/pH external 6) 100 times longer than LUVs made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and cholesterol,with a molar ratio of 60/40.Moreover,the non-phospholipid LUVs are shown to protect ascorbic acid from an oxidizing environment (1 mM iron(III)).Once entrapped in liposomes,ascorbic acid displays a degradation rate similar to that obtained in the absence of iron(III).These results show the possibility to form novel nanocontainers from a mixture of a monoalkylated amphiphile and sterols,with a good pH stability and showing interesting permeability properties.展开更多
基金financially supported by the Natural Sciences and Engineering Research Council of Canadaby the Fonds Québécois de la Recherche sur la Nature et les Technologies through its Strategic Clusterprogram
文摘We demonstrate that it is possible to form non-phospholipid fluid bilayers in aqueous milieu with a mixture of palmitic acid (PA),cholesterol (Chol),and cholesterol sulfate (Schol) in a molar proportion of 30/28/42.These self-assemblies are shown to be bilayers in the liquid ordered phase.They are stable between pH 5 and 9.Over this pH range,the protonation/deprotonation of PA carboxylic group is observed but this change does not appear to alter the stability of these bilayers,a behavior contrasting with that observed for binary mixtures of PA/Chol,and PA/Schol.The multilamellar dispersions formed spontaneously from the PA/Chol/Schol mixture could be successfully extruded to form Large Unilamellar Vesicles (LUVs).These LUVs show interesting permeability properties,linked with their high sterol content.These non-phospholipid liposomes can sustain a pH gradient (pH internal 8/pH external 6) 100 times longer than LUVs made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and cholesterol,with a molar ratio of 60/40.Moreover,the non-phospholipid LUVs are shown to protect ascorbic acid from an oxidizing environment (1 mM iron(III)).Once entrapped in liposomes,ascorbic acid displays a degradation rate similar to that obtained in the absence of iron(III).These results show the possibility to form novel nanocontainers from a mixture of a monoalkylated amphiphile and sterols,with a good pH stability and showing interesting permeability properties.