期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
澜沧江中下游梯级水电站主要参数优化研究 被引量:1
1
作者 罗玉静 施熙灿 冯峻林 《水利经济》 1990年第3期31-35,30,共6页
(一) 概述水电站参数选择(包括正常蓄水位、死水位和装机容量的选择)涉及面很广,澜沧江基本上可以仅考虑水能的开发利用,但它仍然是一个相当复杂的问题。随着正常蓄水位的提高,水电站的兴利库容、保证出力、装机容量和多年平均发电量均... (一) 概述水电站参数选择(包括正常蓄水位、死水位和装机容量的选择)涉及面很广,澜沧江基本上可以仅考虑水能的开发利用,但它仍然是一个相当复杂的问题。随着正常蓄水位的提高,水电站的兴利库容、保证出力、装机容量和多年平均发电量均将增加,但是大坝等水工建筑物造价和水库淹没损失亦相应增加,而且水库规模愈大,施工期愈长,发挥效益也愈晚。因此,通过系统分析可以求出一个最有利的方案。同理。 展开更多
关键词 梯级水电站 参数优择 澜沧江
下载PDF
Machine tool selection based on fuzzy evaluation and optimization of cutting parameters
2
作者 张保平 关世玺 +2 位作者 张博 王斌 田甜 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2015年第4期384-389,共6页
The paper analyzes the factors influencing machine tool selection. By using fuzzy mathematics theory, we establish a theorietical model for optimal machine tool selection considering geometric features, clamping size,... The paper analyzes the factors influencing machine tool selection. By using fuzzy mathematics theory, we establish a theorietical model for optimal machine tool selection considering geometric features, clamping size, machining range, machining precision and surface roughness. By means of fuzzy comprehensive evaluation method, the membership degree of machine tool selection and the largest comprehensive evaluation index are determined. Then the reasonably automatic selection of machine tool is realized in the generative computer aided process planning (CAPP) system. Finally, the finite element model based on ABAQUS is established and the cutting process of machine tool is simulated. According to the theoretical and empirical cutting parameters and the curve of surface residual stress, the optimal cutting parameters can be determined. 展开更多
关键词 fuzzy evaluation machine selection computer aided process planning(CAPP) parameter optimization
下载PDF
Optimal choice of parameters for particle swarm optimization 被引量:14
3
作者 张丽平 俞欢军 胡上序 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第6期528-534,共7页
The constriction factor method (CFM) is a new variation of the basic particle swarm optimization (PSO), which has relatively better convergent nature. The effects of the major parameters on CFM were systematically inv... The constriction factor method (CFM) is a new variation of the basic particle swarm optimization (PSO), which has relatively better convergent nature. The effects of the major parameters on CFM were systematically investigated based on some benchmark functions. The constriction factor, velocity constraint, and population size all have significant impact on the per- formance of CFM for PSO. The constriction factor and velocity constraint have optimal values in practical application, and im- proper choice of these factors will lead to bad results. Increasing population size can improve the solution quality, although the computing time will be longer. The characteristics of CFM parameters are described and guidelines for determining parameter values are given in this paper. 展开更多
关键词 Particle swarm optimization (PSO) Constriction factor method (CFM) Parameter selection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部