The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the tem...The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the temperature range of 950-1100 ℃ and the strain rate range of 0.001-10 s-1. The processing maps at different strains were then constructed based on the dynamic materials model, and the hot compression process parameters and deformation mechanism were optimized and analyzed, respectively. The results show that the processing maps exhibit two domains with a high efficiency of power dissipation and a flow instability domain with a less efficiency of power dissipation. The types of domains were characterized by convergence and divergence of the efficiency of power dissipation, respectively. The convergent domain in a+fl phase field is at the temperature of 950-990 ℃ and the strain rate of 0.001-0.01 s^-1, which correspond to a better hot compression process window of α+β phase field. The peak of efficiency of power dissipation in α+β phase field is at 950 ℃ and 0.001 s 1, which correspond to the best hot compression process parameters of α+β phase field. The convergent domain in β phase field is at the temperature of 1020-1080 ℃ and the strain rate of 0.001-0.1 s^-l, which correspond to a better hot compression process window of β phase field. The peak of efficiency of power dissipation in ℃ phase field occurs at 1050 ℃ over the strain rates from 0.001 s^-1 to 0.01 s^-1, which correspond to the best hot compression process parameters of ,8 phase field. The divergence domain occurs at the strain rates above 0.5 s^-1 and in all the tested temperature range, which correspond to flow instability that is manifested as flow localization and indicated by the flow softening phenomenon in stress-- strain curves. The deformation mechanisms of the optimized hot compression process windows in a+β and β phase fields are identified to be spheroidizing and dynamic recrystallizing controlled by self-diffusion mechanism, respectively. The microstructure observation of the deformed specimens in different domains matches very well with the optimized results.展开更多
The constriction factor method (CFM) is a new variation of the basic particle swarm optimization (PSO), which has relatively better convergent nature. The effects of the major parameters on CFM were systematically inv...The constriction factor method (CFM) is a new variation of the basic particle swarm optimization (PSO), which has relatively better convergent nature. The effects of the major parameters on CFM were systematically investigated based on some benchmark functions. The constriction factor, velocity constraint, and population size all have significant impact on the per- formance of CFM for PSO. The constriction factor and velocity constraint have optimal values in practical application, and im- proper choice of these factors will lead to bad results. Increasing population size can improve the solution quality, although the computing time will be longer. The characteristics of CFM parameters are described and guidelines for determining parameter values are given in this paper.展开更多
A modified cellular automaton(CA) program was developed to simulate the process of dynamic recrystallization(DRX) for 23Co13Ni11Cr3Mo ultrahigh strength steel.In this model,influences of deformation parameters on hard...A modified cellular automaton(CA) program was developed to simulate the process of dynamic recrystallization(DRX) for 23Co13Ni11Cr3Mo ultrahigh strength steel.In this model,influences of deformation parameters on hardening rate and solute drag effect were considered.Moreover,an inverse analysis method was proposed for parameters identification of dislocation model and solute drag effect based on the results of isothermal compression tests on Gleeble-1500.Then,simulated microstructures under different deformation conditions were compared with those of experiments.A good agreement is achieved.Furthermore,influences of deformation parameters on microstructure evolution for 23Co13Ni11Cr3Mo steel were investigated in details.High strain is an effective measure to refine grain and improve homogeneity.Meanwhile,the desired deformation parameters are temperature of 1000-1050 °C and strain rate of 0.008-0.01 s-1 for obtaining grains smaller than 22.5 μm.展开更多
The objective of the present paper is to study the sweep effect on the blade design performance of a transonic compressor rotor.The baseline to be modified and swept is a designed well efficient transonic single rotor...The objective of the present paper is to study the sweep effect on the blade design performance of a transonic compressor rotor.The baseline to be modified and swept is a designed well efficient transonic single rotor compressor. The first part of the present study is concerning the sweep effect with straight leading edge.In this case fixing the hub section the swept blade is formed by tilting the leading edge with whole blade forwards and backwards axially.The second part is to use an optimization strategy with simple gradient-based optimum-searching method and multi-section blade parameterization technique to search and generate an optimal swept rotor with curved arbitrary leading edge.Its adiabatic efficiency is a little bit greater than that of the reference un-swept rotor.展开更多
基金Project (51005112) supported by the National Natural Science Foundation of ChinaProject (2010ZF56019) supported by the Aviation Science Foundation of China+1 种基金Project (GJJ11156) supported by the Education Commission of Jiangxi Province, ChinaProject(GF200901008) supported by the Open Fund of National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, China
文摘The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the temperature range of 950-1100 ℃ and the strain rate range of 0.001-10 s-1. The processing maps at different strains were then constructed based on the dynamic materials model, and the hot compression process parameters and deformation mechanism were optimized and analyzed, respectively. The results show that the processing maps exhibit two domains with a high efficiency of power dissipation and a flow instability domain with a less efficiency of power dissipation. The types of domains were characterized by convergence and divergence of the efficiency of power dissipation, respectively. The convergent domain in a+fl phase field is at the temperature of 950-990 ℃ and the strain rate of 0.001-0.01 s^-1, which correspond to a better hot compression process window of α+β phase field. The peak of efficiency of power dissipation in α+β phase field is at 950 ℃ and 0.001 s 1, which correspond to the best hot compression process parameters of α+β phase field. The convergent domain in β phase field is at the temperature of 1020-1080 ℃ and the strain rate of 0.001-0.1 s^-l, which correspond to a better hot compression process window of β phase field. The peak of efficiency of power dissipation in ℃ phase field occurs at 1050 ℃ over the strain rates from 0.001 s^-1 to 0.01 s^-1, which correspond to the best hot compression process parameters of ,8 phase field. The divergence domain occurs at the strain rates above 0.5 s^-1 and in all the tested temperature range, which correspond to flow instability that is manifested as flow localization and indicated by the flow softening phenomenon in stress-- strain curves. The deformation mechanisms of the optimized hot compression process windows in a+β and β phase fields are identified to be spheroidizing and dynamic recrystallizing controlled by self-diffusion mechanism, respectively. The microstructure observation of the deformed specimens in different domains matches very well with the optimized results.
基金Project (No. 20276063) supported by the National Natural Sci-ence Foundation of China
文摘The constriction factor method (CFM) is a new variation of the basic particle swarm optimization (PSO), which has relatively better convergent nature. The effects of the major parameters on CFM were systematically investigated based on some benchmark functions. The constriction factor, velocity constraint, and population size all have significant impact on the per- formance of CFM for PSO. The constriction factor and velocity constraint have optimal values in practical application, and im- proper choice of these factors will lead to bad results. Increasing population size can improve the solution quality, although the computing time will be longer. The characteristics of CFM parameters are described and guidelines for determining parameter values are given in this paper.
基金Project(2011CB706802)supported by the National Basic Research Program of ChinaProject(2012ZX04010-081)supported by National Science and Technology Major Program of China
文摘A modified cellular automaton(CA) program was developed to simulate the process of dynamic recrystallization(DRX) for 23Co13Ni11Cr3Mo ultrahigh strength steel.In this model,influences of deformation parameters on hardening rate and solute drag effect were considered.Moreover,an inverse analysis method was proposed for parameters identification of dislocation model and solute drag effect based on the results of isothermal compression tests on Gleeble-1500.Then,simulated microstructures under different deformation conditions were compared with those of experiments.A good agreement is achieved.Furthermore,influences of deformation parameters on microstructure evolution for 23Co13Ni11Cr3Mo steel were investigated in details.High strain is an effective measure to refine grain and improve homogeneity.Meanwhile,the desired deformation parameters are temperature of 1000-1050 °C and strain rate of 0.008-0.01 s-1 for obtaining grains smaller than 22.5 μm.
基金supported by National Natural Science Foundation of China with project No.50736007National Basic Research Program of China numbered 2007CB210103
文摘The objective of the present paper is to study the sweep effect on the blade design performance of a transonic compressor rotor.The baseline to be modified and swept is a designed well efficient transonic single rotor compressor. The first part of the present study is concerning the sweep effect with straight leading edge.In this case fixing the hub section the swept blade is formed by tilting the leading edge with whole blade forwards and backwards axially.The second part is to use an optimization strategy with simple gradient-based optimum-searching method and multi-section blade parameterization technique to search and generate an optimal swept rotor with curved arbitrary leading edge.Its adiabatic efficiency is a little bit greater than that of the reference un-swept rotor.