现有参数化台风风场模型通常采用单一地表粗糙度假设,忽略地形和土地覆盖的影响,使得参数化台风风场模型不能真实反映台风风场。本文基于GTOPO30(Global Topographic Data of 30 arc seconds)全球数字高程数据和USGS(U.S.Geological Sur...现有参数化台风风场模型通常采用单一地表粗糙度假设,忽略地形和土地覆盖的影响,使得参数化台风风场模型不能真实反映台风风场。本文基于GTOPO30(Global Topographic Data of 30 arc seconds)全球数字高程数据和USGS(U.S.Geological Survey)全球土地覆盖数据,将地形地貌效应等效为地表粗糙长度,建立了受西北太平洋台风影响的东亚地区的地表粗糙长度空间分布;并对比验证了3个典型地貌的地表粗糙长度。然后,对参数化台风风场模型进行了适当修正,使其能耦合地形起伏对风场产生的抬升和沉降作用。以WRF(Weather Research and Forecasting)模式的模拟结果为基准,采用3个历史台风案例,考察了地形地貌对参数化台风风场模拟的影响。对比结果表明,考虑地形地貌效应可以显著提升参数化台风风场模型对台风空间结构的模拟能力。考虑地形地貌影响的参数化台风风场模型的模拟结果与实测结果吻合较好。展开更多
文摘现有参数化台风风场模型通常采用单一地表粗糙度假设,忽略地形和土地覆盖的影响,使得参数化台风风场模型不能真实反映台风风场。本文基于GTOPO30(Global Topographic Data of 30 arc seconds)全球数字高程数据和USGS(U.S.Geological Survey)全球土地覆盖数据,将地形地貌效应等效为地表粗糙长度,建立了受西北太平洋台风影响的东亚地区的地表粗糙长度空间分布;并对比验证了3个典型地貌的地表粗糙长度。然后,对参数化台风风场模型进行了适当修正,使其能耦合地形起伏对风场产生的抬升和沉降作用。以WRF(Weather Research and Forecasting)模式的模拟结果为基准,采用3个历史台风案例,考察了地形地貌对参数化台风风场模拟的影响。对比结果表明,考虑地形地貌效应可以显著提升参数化台风风场模型对台风空间结构的模拟能力。考虑地形地貌影响的参数化台风风场模型的模拟结果与实测结果吻合较好。