期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
结构物理参数识别的多尺度参数卡尔曼滤波方法 被引量:6
1
作者 任宜春 易伟建 《工程力学》 EI CSCD 北大核心 2008年第5期1-5,11,共6页
经过正交小波变换后,低尺度上测量信号的信噪比提高。应用小波变换将结构的激励信号和响应信号分解到不同尺度上,得到不同尺度上结构的状态方程和测量方程,结合动力学系统辨识的参数卡尔曼滤波方法,提出了结构物理参数的多尺度参数卡尔... 经过正交小波变换后,低尺度上测量信号的信噪比提高。应用小波变换将结构的激励信号和响应信号分解到不同尺度上,得到不同尺度上结构的状态方程和测量方程,结合动力学系统辨识的参数卡尔曼滤波方法,提出了结构物理参数的多尺度参数卡尔曼滤波辨识方法。理论分析和数值算例表明:在多尺度上对结构参数进行辨识比在单一尺度上辨识能获得更高的精度。 展开更多
关键词 结构工程 系统识别 小波变换 多尺度估计 参数卡尔曼滤波
下载PDF
一类加权全局迭代参数卡尔曼滤波算法 被引量:6
2
作者 赵昕 李杰 《计算力学学报》 CAS CSCD 北大核心 2002年第4期403-408,共6页
结合参数卡尔曼滤波算法和全局迭代推广卡尔曼滤波算法本文提出了加权全局迭代参数卡尔曼滤波算法。参数卡尔曼滤波算法可避免系统参数和状态变量之间的非线性耦合 ,同时通过带有目标函数的全局迭代算法保证能够获取到稳定、收敛的识别... 结合参数卡尔曼滤波算法和全局迭代推广卡尔曼滤波算法本文提出了加权全局迭代参数卡尔曼滤波算法。参数卡尔曼滤波算法可避免系统参数和状态变量之间的非线性耦合 ,同时通过带有目标函数的全局迭代算法保证能够获取到稳定、收敛的识别结果。分别针对线性结构模型和随动强化双线性结构模型进行了仿真参数识别。结果显示 ,不加权的全局迭代参数卡尔曼滤波算法对线性系统是有效的 ,而对非线性系统必须使用加权的全局迭代参数卡尔曼滤波算法。当信噪比较大 ,迭代无法得到收敛的结果时 。 展开更多
关键词 系统识别 参数卡尔曼滤波 加权全局迭代 非线性系统
下载PDF
基于带参数的卡尔曼滤波的河道糙率动态反演研究 被引量:9
3
作者 程伟平 毛根海 《水力发电学报》 EI CSCD 北大核心 2005年第2期123-127,共5页
河道糙率是洪水水力计算的重要参数 ,引入控制论理论 ,应用带参数的卡尔曼滤波法进行河道糙率反演分析。数值计算结果表明状态变化率对带参数的卡尔曼滤波法的滤波性能有较大影响 ,同时分析了观测断面数量对滤波结果的影响。针对计算量... 河道糙率是洪水水力计算的重要参数 ,引入控制论理论 ,应用带参数的卡尔曼滤波法进行河道糙率反演分析。数值计算结果表明状态变化率对带参数的卡尔曼滤波法的滤波性能有较大影响 ,同时分析了观测断面数量对滤波结果的影响。针对计算量较大的特点 ,通过敏度矩阵相关性分析 ,提出了提高计算效率的有效方法。 展开更多
关键词 河流动力学 河道 反演 参数卡尔曼滤波 糙率
下载PDF
基于GPS弹道测量的卡尔曼滤波参数估计算法 被引量:6
4
作者 申强 葛腼 +1 位作者 彭博 何新 《北京理工大学学报》 EI CAS CSCD 北大核心 2009年第12期1048-1051,共4页
为提高基于GPS定位的弹道辨识方法的实时性和可靠性,提出了一种以弹道微分方程四阶龙格库塔数值积分预测作为状态量递推的卡尔曼滤波弹道参数估计算法,并针对卫星接收机有粗大误差或失效情况对方法进行了改进.利用卫星信号模拟器和C/A码... 为提高基于GPS定位的弹道辨识方法的实时性和可靠性,提出了一种以弹道微分方程四阶龙格库塔数值积分预测作为状态量递推的卡尔曼滤波弹道参数估计算法,并针对卫星接收机有粗大误差或失效情况对方法进行了改进.利用卫星信号模拟器和C/A码GPS接收机构建半实物仿真系统对算法进行验证,该方法的弹道参数估计误差是GPS接收机正常工作时测量误差的30%~40%;且能在GPS接收机出现异常时继续给出接近实际的估计值. 展开更多
关键词 全球卫星定位系统(GPS) 卡尔曼滤波:弹道参数估计 半实物仿真
下载PDF
基于MATLAB的卡尔曼滤波法参数辨识与仿真 被引量:6
5
作者 童余德 周永余 +1 位作者 陈永冰 周岗 《船电技术》 2009年第8期47-50,共4页
本文介绍了基于MATLAB的使用卡尔曼滤波法进行参数辨识的设计与仿真方法。简述了参数辨识的概念和卡尔曼滤波法应用于参数辨识的基本原理,结合实例与最小二乘法进行比较,给出了相应的仿真结果和分析。
关键词 Matlab参数辨识卡尔曼滤波法最小二乘法
下载PDF
有失序量测的随机卡尔曼滤波状态更新最优解
6
作者 王东华 朱允民 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期1271-1274,共4页
在中心式多传感器跟踪系统中,经常会出现同一目标的量测没有按照正常的时间顺序到达处理中心的现象.如何利用(相对当前最新时刻而言)负时点的失序量测本更新状态的问题在现实的多传感器系统中普遍存在.对于具有确定性参数矩阵的卡尔曼滤... 在中心式多传感器跟踪系统中,经常会出现同一目标的量测没有按照正常的时间顺序到达处理中心的现象.如何利用(相对当前最新时刻而言)负时点的失序量测本更新状态的问题在现实的多传感器系统中普遍存在.对于具有确定性参数矩阵的卡尔曼滤波,Bar-Shalom于2002年给出了利用失序量测的最优状态更新估计方程.本文作者将此结果进一步推广到了具有随机参数矩阵的卡尔曼滤波,给出了利用失序量测时当前状态的最优更新估计方程. 展开更多
关键词 随机参数矩阵卡尔曼滤波 精确状态更新方程 线性估计理论 失序量测
原文传递
人工胰脏中数据驱动个体血糖代谢模型的辨识 被引量:2
7
作者 李鹏 祝楠楠 +1 位作者 郁磊 王弼陡 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第3期714-720,共7页
数据驱动时间序列模型是人工胰脏系统中最常用的一类血糖预测模型,但其血糖预测精度受到进食不确定性和胰岛素敏感性波动等实际因素的影响。本文从真实血糖测量数据入手,提出基于卡尔曼滤波参数估计的带输入误差滑动平均模型的辨识方法... 数据驱动时间序列模型是人工胰脏系统中最常用的一类血糖预测模型,但其血糖预测精度受到进食不确定性和胰岛素敏感性波动等实际因素的影响。本文从真实血糖测量数据入手,提出基于卡尔曼滤波参数估计的带输入误差滑动平均模型的辨识方法,将辨识结果与最小二乘法辨识结果进行对比。结果表明,本文提出的辨识方法具有辨识精度高(FIT:90.05±3.12%v.s.54.41±9.56%)、能有效抵消实际因素的影响、对不同特征的个体能获得稳定的辨识结果等优势。 展开更多
关键词 卡尔曼滤波参数估计 带输入误差自回归滑动平均模型 数据驱动模型 个体化血糖代谢模型 人工胰脏
下载PDF
Identification of dynamic model parameters for lithium-ion batteries used in hybrid electric vehicles 被引量:4
8
作者 张彩萍 Zhang Chengning +1 位作者 Liu Jiazhong Sharkh S M 《High Technology Letters》 EI CAS 2010年第1期6-12,共7页
An electrical equivalent circuit model for lithium-ion batteries used for hybrid electric vehicles (HEV) is presented. The model has two RC networks characterizing battery activation and concentration polarization p... An electrical equivalent circuit model for lithium-ion batteries used for hybrid electric vehicles (HEV) is presented. The model has two RC networks characterizing battery activation and concentration polarization process. The parameters of the model are identified using combined experimental and extended Kalman filter (EKF) recursive methods. The open-circuit voltage and ohmic resistance of the battery are directly measured and calculated from experimental measurements, respectively. The rest of the coupled dynamic parameters, i.e. the RC network parameters, are estimated using the EKF method. Experimental and simulation results are presented to demonstrate the efficacy of the proposed circuit model and parameter identification techniques for simulating battery dynamics. 展开更多
关键词 parameter identification dynamic battery model lithium-ion battery hybrid electric vehicles (HEV)
下载PDF
Parameters identification of the compound cage rotor induction machine based on linearized Kalman filtering
9
作者 王铁成 李伟力 孙建伟 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2003年第2期133-136,共4页
A mathematical model has been built up for compound cage rotor induction machine with the rotor resistance and leakage inductance in the model identified through Kalman filtering method. Using the identified parameter... A mathematical model has been built up for compound cage rotor induction machine with the rotor resistance and leakage inductance in the model identified through Kalman filtering method. Using the identified parameters, simulation studies are performed, and simulation results are compared with testing results. 展开更多
关键词 compound cage rotor parameter identification Kalman filter
下载PDF
An Algorithm for Parameter Identification of UAS from Flight Data
10
作者 Caterina Grillo Fernando Montano 《Journal of Mechanics Engineering and Automation》 2014年第10期838-846,共9页
The aim of the present work is to realize an identification algorithm especially devoted to UAS (unmanned aerial systems). Because UAS employ low cost sensor, very high measurement noise has to be taken into account... The aim of the present work is to realize an identification algorithm especially devoted to UAS (unmanned aerial systems). Because UAS employ low cost sensor, very high measurement noise has to be taken into account. Therefore, due to both modelling errors and atmospheric turbulence, noticeable system noise has also to be considered. To cope with both the measurement and system noise, the identification problem addressed in this work is solved by using the FEM (filter error method) approach. A nonlinear mathematical model of the subject aircraft longitudinal dynamics has been tuned up through semi-empirical methods, numerical simulations and ground tests. To take into account model nonlinearities, an EKF (extended Kalman filter) has been implemented to propagate the state. A procedure has been tuned up to determine either aircraft parameters or the process noise. It is noticeable that, because the system noise is treated as unknown parameter, it is possible to identify system affected by noticeable modelling errors. Therefore, the obtained values of process noise covariance matrix can be used to highlight system failure. The obtained results show that the algorithm requires a short computation time to determine aircraft parameter with noticeable precision by using low computation power. The present procedure could be employed to determine the system noise for various mechanical systems, since it is particularly devoted to systems which present dynamics that are difficult to model. Finally, the tuned up off-line EKF should be employed to on-line estimation of either state or unmeasurable inputs like atmospheric turbulence. 展开更多
关键词 System identification EKF UAS.
下载PDF
Simultaneous estimation of surface soil moisture and soil properties with a dual ensemble Kalman smoother 被引量:1
11
作者 CHU Nan HUANG ChunLin +1 位作者 LI Xin DU PeiJun 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第12期2327-2339,共13页
In this paper, a new state-parameter estimation approach is presented based on the dual ensemble Kalman smoother(DEn KS) and simple biosphere model(Si B2) to sequentially estimate both the soil properties and soil moi... In this paper, a new state-parameter estimation approach is presented based on the dual ensemble Kalman smoother(DEn KS) and simple biosphere model(Si B2) to sequentially estimate both the soil properties and soil moisture profile by assimilating surface soil moisture observations. The Arou observation station, located in the upper reaches of the Heihe River in northwestern China, was selected to test the proposed method. Three numeric experiments were designed and performed to analyze the influence of uncertainties in model parameters, atmospheric forcing, and the model's physical mechanics on soil moisture estimates. Several assimilation schemes based on the ensemble Kalman filter(En KF), ensemble Kalman smoother(En KS), and dual En KF(DEn KF) were also compared in this study. The results demonstrate that soil moisture and soil properties can be simultaneously estimated by state-parameter estimation methods, which can provide more accurate estimation of soil moisture than traditional filter methods such as En KF and En KS. The estimation accuracy of the model parameters decreased with increasing error sources. DEn KS outperformed DEn KF in estimating soil moisture in most cases, especially where few observations were available. This study demonstrates that the DEn KS approach is a useful and practical way to improve soil moisture estimation. 展开更多
关键词 soil moisture soil properties data assimilation state-parameter estimation dual ensemble Kalman smoother
原文传递
A data assimilation-based method for optimizing parameterization schemes in a land surface process model 被引量:2
12
作者 ZHANG ShengLei CHEN LiangFu +1 位作者 SU Lin JIA Li 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第12期2220-2235,共16页
Optimizing the parameters of a land surface process model(LSPM) through data assimilation(DA) can not only improve and perfect the parameterization schemes in the LSPM through the physical mechanism, but also increase... Optimizing the parameters of a land surface process model(LSPM) through data assimilation(DA) can not only improve and perfect the parameterization schemes in the LSPM through the physical mechanism, but also increase its regional adaptability and simulation capability. This has practical importance for improving simulation results and the climate-prediction capability of general circulation models(GCMs) and regional climate models(RCMs). This paper presents a DA-based method for optimizing the parameterization schemes in LSPMs. We optimize the unsaturated-soil water flow(Un SWF) model as an example by developing a soil-moisture assimilation scheme based on the Un SWF model and the extended Kalman filter(EKF) algorithm, and then combining them with the Variable Infiltration Capacity(VIC) model. Using a month as the assimilation window, we used the Shuffled Complex Evolution–University of Arizona(SCE-UA) algorithm to minimize the objective function through simulated and assimilated soil moisture, achieved the best fit with the given objective function measurement, and optimized the parameters of the Un SWF model, including the saturated-soil hydraulic conductivity, moisture content, matrix potential, and the Clapp and Hornberger constant. The optimal values of the model parameters were obtained during the DA period(the year 1986), and then the optimized parameters were used to improve the Un SWF model. Finally, numerical simulation experiments were carried out from 1986 to 1993 to evaluate the simulation capability of the improved model and to explore and realize the DA-based method for optimizing the soil water parameterization scheme in LSPMs. The experimental results indicated that the optimized model parameters improved and perfected the model based on the physical mechanism, and increased its simulation capability; the optimized model parameters had good temporal portability and their adaptability was stronger, achieving the aim of improving the model. Therefore, this method is reasonable and feasible. This paper provides a good reference for DA-based optimization of the parameterization schemes in LSPMs. 展开更多
关键词 data assimilation land surface process model parameterization scheme SCE-UA algorithm soft moisture
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部