The accuracy of background clutter model is a key factor which determines the performance of a constant false alarm rate(CFAR) target detection method. G0 distribution is one of the optimal statistic models in the syn...The accuracy of background clutter model is a key factor which determines the performance of a constant false alarm rate(CFAR) target detection method. G0 distribution is one of the optimal statistic models in the synthetic aperture radar(SAR) image background clutter modeling and can accurately model various complex background clutters in the SAR images. But the application of the distribution is greatly limited by its disadvantages that the parameter estimation is complex and the local detection threshold is difficult to be obtained. In order to solve the above-mentioned problems, an synthetic aperture radar CFAR target detection method using the logarithmic cumulant(Mo LC) + method of moment(Mo M)-based G0 distribution clutter model is proposed. In the method, G0 distribution is used for modeling the background clutters, a new Mo LC+Mo M-based parameter estimation method coupled with a fast iterative algorithm is used for estimating the parameters of G0 distribution and an exquisite dichotomy method is used for obtaining the local detection threshold of CFAR detection, which greatly improves the computational efficiency, detection performance and environmental adaptability of CFAR detection. Experimental results show that the proposed SAR CFAR target detection method has good target detection performance in various complex background clutter environments.展开更多
In this work, a systematic approach is presented to obtain the input-output equations of a single loop 4-bar spatial mechanisms. The dialytic method along with Denavit-Hartenberg parameters can be used to obtain these...In this work, a systematic approach is presented to obtain the input-output equations of a single loop 4-bar spatial mechanisms. The dialytic method along with Denavit-Hartenberg parameters can be used to obtain these equations efficiently. A genetic algorithm (GA) has been used to solve the problem of spatial mechanisms synthesis. Two types of mechanisms, e.g., RSCR and RSPC (R: revolute; S: spherical; C: cylindrical; P: prismatic), have illustrated the application of the GA to solve the problem of function generation and path generation. In some cases, the GA method becomes trapped in a local minimum. A combined GA-fuzzy logic (GA-FL) method is then used to improve the final result. The results show that GAs, combined with an adequate description of the mechanism, are well suited for spatial mechanism synthesis problems and have neither difficulties inherent to the choice of the initial feasible guess, nor a problem of convergence, as it is the case for deterministic methods.展开更多
基金Project(61105020)supported by the National Natural Science Foundation of ChinaProject(13zxtk08)supported by the Key Research Platform for Research Projects of Southwest University of Science and Technology,China
文摘The accuracy of background clutter model is a key factor which determines the performance of a constant false alarm rate(CFAR) target detection method. G0 distribution is one of the optimal statistic models in the synthetic aperture radar(SAR) image background clutter modeling and can accurately model various complex background clutters in the SAR images. But the application of the distribution is greatly limited by its disadvantages that the parameter estimation is complex and the local detection threshold is difficult to be obtained. In order to solve the above-mentioned problems, an synthetic aperture radar CFAR target detection method using the logarithmic cumulant(Mo LC) + method of moment(Mo M)-based G0 distribution clutter model is proposed. In the method, G0 distribution is used for modeling the background clutters, a new Mo LC+Mo M-based parameter estimation method coupled with a fast iterative algorithm is used for estimating the parameters of G0 distribution and an exquisite dichotomy method is used for obtaining the local detection threshold of CFAR detection, which greatly improves the computational efficiency, detection performance and environmental adaptability of CFAR detection. Experimental results show that the proposed SAR CFAR target detection method has good target detection performance in various complex background clutter environments.
基金Project supported by the CPER (Contrats de Projets Etat Région) Poitou-Charentes 2007-2013 (Program Project 10 "Imageset interactivités")the Tunisian Secretary of State of Scientific Research and Technology (SERST) through the contract LAB-MA 05
文摘In this work, a systematic approach is presented to obtain the input-output equations of a single loop 4-bar spatial mechanisms. The dialytic method along with Denavit-Hartenberg parameters can be used to obtain these equations efficiently. A genetic algorithm (GA) has been used to solve the problem of spatial mechanisms synthesis. Two types of mechanisms, e.g., RSCR and RSPC (R: revolute; S: spherical; C: cylindrical; P: prismatic), have illustrated the application of the GA to solve the problem of function generation and path generation. In some cases, the GA method becomes trapped in a local minimum. A combined GA-fuzzy logic (GA-FL) method is then used to improve the final result. The results show that GAs, combined with an adequate description of the mechanism, are well suited for spatial mechanism synthesis problems and have neither difficulties inherent to the choice of the initial feasible guess, nor a problem of convergence, as it is the case for deterministic methods.