Ionic liquids (ILs) have been widely used in separation, catalysis, electrochemistry, etc., and one of the most outstanding characteristics is that ILs can be tailored and tuned for specific tasks. In order to design ...Ionic liquids (ILs) have been widely used in separation, catalysis, electrochemistry, etc., and one of the most outstanding characteristics is that ILs can be tailored and tuned for specific tasks. In order to design and make better use of ionic liquids, the structures and properties relationship is indispensable. Both molecular dynamics and Monte Carlo simulations have been proved useful to understand the behavior of molecules at the microscale and the properties of the system. However, the quality of such simulations depends on force field parameters describing the interactions between atoms. All-atom (AA) or the united-atom (UA) force fields will be chosen because of the demand for more exact results or the lower computational cost, respectively. In order to make a systematic comparison of the two force fields, molecular simulations for four kinds of acyclic guanidinium-based ionic liquids (cations: (R2N)2C=N+<, anion: nitric or perchloric acid) were performed based on the AA and the UA force fields in this work. AA force field parameters were derived from our previous work (Fluid Phase Equilib., 2008, 272: 1-7), and the UA parameters were proposed in this work. Molecular dynamics simulation results for the AA and UA force fields were compared. Simulation densities are very similar to each other. Center of mass radial distribution functions (RDFs), site to site RDFs and spatial distribution functions (SDFs) were also investigated to depict the microscopic structures of the ILs.展开更多
基金supported by the General Program Youth of National Natural Science Foundation of China (20903098, 21073194, 21106146)State Key Laboratory of Multiphase Complex Systems (MPCS-2011-D-05)
文摘Ionic liquids (ILs) have been widely used in separation, catalysis, electrochemistry, etc., and one of the most outstanding characteristics is that ILs can be tailored and tuned for specific tasks. In order to design and make better use of ionic liquids, the structures and properties relationship is indispensable. Both molecular dynamics and Monte Carlo simulations have been proved useful to understand the behavior of molecules at the microscale and the properties of the system. However, the quality of such simulations depends on force field parameters describing the interactions between atoms. All-atom (AA) or the united-atom (UA) force fields will be chosen because of the demand for more exact results or the lower computational cost, respectively. In order to make a systematic comparison of the two force fields, molecular simulations for four kinds of acyclic guanidinium-based ionic liquids (cations: (R2N)2C=N+<, anion: nitric or perchloric acid) were performed based on the AA and the UA force fields in this work. AA force field parameters were derived from our previous work (Fluid Phase Equilib., 2008, 272: 1-7), and the UA parameters were proposed in this work. Molecular dynamics simulation results for the AA and UA force fields were compared. Simulation densities are very similar to each other. Center of mass radial distribution functions (RDFs), site to site RDFs and spatial distribution functions (SDFs) were also investigated to depict the microscopic structures of the ILs.