期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
迁移学习下的火箭发动机参数异常检测策略 被引量:5
1
作者 张晨曦 唐曙 唐珂 《计算机应用》 CSCD 北大核心 2020年第9期2774-2780,共7页
在火箭飞行时的参数异常检测中,传统红线法的漏报率和误报率较高,专家系统法的维护成本过高,而机器学习受制于数据集规模难以训练模型,因此提出了分别基于实例和基于模型的两种迁移策略。为了对YF-77新型发动机的关键参数氧泵转速进行... 在火箭飞行时的参数异常检测中,传统红线法的漏报率和误报率较高,专家系统法的维护成本过高,而机器学习受制于数据集规模难以训练模型,因此提出了分别基于实例和基于模型的两种迁移策略。为了对YF-77新型发动机的关键参数氧泵转速进行实时监测,在分析具有相同构造原理的YF-75与YF-77氢氧发动机的参数组成和数据特点后,处理领域差异,构建特征空间,并筛选特征向量。对YF-75向YF-77分别进行了实例和模型的迁移,并进行了实验验证。对比无迁移的k最近邻(kNN)与支持向量机(SVM)方法,迁移训练后的模型的漏报率从最高58.33%降至最低12.25%,误报率从最高60.83%降至最低13.53%。实验结果验证了两型发动机之间信息的可迁移性,以及迁移学习在航天领域工程实践中应用的可能性。 展开更多
关键词 航天测控 火箭发动机 参数异常检测 迁移学习 数据处理
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部