In order to improve the load capacity, seismic performance and performance-cost ratio of the columns, the concrete at the base of reinforced concrete (RC) columns is substituted with engineered cementitious composit...In order to improve the load capacity, seismic performance and performance-cost ratio of the columns, the concrete at the base of reinforced concrete (RC) columns is substituted with engineered cementitious composites (ECC) to form ECC/RC composite columns. Based on the existing material properties, the mechanical behaviors of the ECC columns, ECC/RC composite columns and RC columns were numerically studied under combined vertical and horizontal loading with the software of ATENA. Then, the failure mechanism of ECC columns and ECC/RC composite columns were comprehensively studied and compared with that of the RC columns. Then, the effects of the height of the ECC, the axial compression ratio, and the transverse reinforcement ratio on the mechanical behaviors of the composite or the ECC column are studied. The calculation results show that the ultimate load capacity, ductility and crack resistance of the ECC or ECC/RC composite columns are superior to those of the RC columns. The ECC/RC composite column with a height of the ECC layer of 1.2h ( h is the height of the cross section) can achieve similar mechanical properties of a full ECC column. With high shear strength, ECC can undertake the shear force and significantly reduce the amount of stirrups, avoiding construction issues and promoting its engineering application.展开更多
The buffeting performance of kilometer-level high-speed railway suspension bridges has a great impact on the smooth operation of high-speed trains.To investigate the buffeting performance of the structure significantl...The buffeting performance of kilometer-level high-speed railway suspension bridges has a great impact on the smooth operation of high-speed trains.To investigate the buffeting performance of the structure significantly different from traditional suspension bridges,the first long-span high-speed railway suspension bridge,Wufengshan Yangtze River Bridge(WYRB),is taken as a numerical example to demonstrate the effects of structural parameters and wind field parameters on the buffeting responses.Based on the design information,the spatial finite element model(FEM)of WYRB is established before testing its accuracy.The fluctuating wind fields are simulated via both classical and stochastic wave based spectral representation method(SRM).Finite element method is further taken to analyze the parametric sensitivity on wind induced buffeting responses in time domain.The results show that the vertical displacement is more sensitive to the changing dead load than the lateral and torsional ones.The larger stiffness of the main girder and the lower sag-to-span ratio are both helpful to reduce the buffeting responses.Wind spectrum and coherence function are key influencing factors to the responses so setting proper wind field parameters are essential in the wind-resistant design stage.The analytical results can provide references for wind resistance analysis and selection of structural and fluctuating wind field parameters for similar long-span high-speed railway suspension bridges.展开更多
To improve the seismic performance of columns, engineered cementitious composite (ECC) is introduced to partially substitute concrete at the base of the columns to form ECC,/reinforced concrete ( RC) composite col...To improve the seismic performance of columns, engineered cementitious composite (ECC) is introduced to partially substitute concrete at the base of the columns to form ECC,/reinforced concrete ( RC) composite columns. The mechanical behaviors of the ECC/RC composite columns are numerically studied under low-cyclic loading with the finite element analysis softwareof MSC. MARC. It is found that the ECC/RC composite columns can significantly enhance the load capacity, the ductility ad energy dissipation of columns. Then, the effects of the height of the ECC, the axial compression ratio and the longitudinal reinforcement ratio on the seismic behaviors of the composite columns are parametrically studied. The results show that the ECC/RC composite column with a height of the ECC layer of 0. Sh(h is the height to the cross-section) can achieve similar seismic performance of a full ECC column. The peak load of the composite column increases significantly while the ductility decreases with the increase of the axial compression ratio. Increasing the longitudinal reinforcement ratio within a certain range can improve the ductility and energy dissipation capacity and almost has no effect on load capacity. The aalysis results ae instructive and valuable for reference in designing ECC structures.展开更多
Thermogravimetric analysis and electrical resistivity were used to determine the hydration process of cement paste with rice husk ash(RHA)(0−15%)and water-cement ratio of 0.4 in this work.X-ray diffraction(XRD)method ...Thermogravimetric analysis and electrical resistivity were used to determine the hydration process of cement paste with rice husk ash(RHA)(0−15%)and water-cement ratio of 0.4 in this work.X-ray diffraction(XRD)method and scanning electron microscopy(SEM)were used to survey crystal composition and microstructures of specimens cured for 3 h,1 d,7 d and 28 d.Finally,electrical parameters(electrical resistance and AC impedance spectroscopy)of steel bars reinforced cement paste were investigated to study the effect of RHA on the corrosion resistance.Results showed that RHA could affect the cement hydration by hydration promotion and pozzolanic effect.The evaluation function for electrical resistivity and curing ages fitted well with linear increasing function.The addition of RHA higher than 5%demonstrated a decreasing role in the electrical resistivity of cement paste at earlier curing ages(3−7 d).Meanwhile,when at later curing ages(7−28 d)the result was the opposite.Moreover,RHA demonstrated positive effects on corrosion resistance of steel bars in cement paste.展开更多
In order to solve the problem of weak power performance of vehicle equipped with continuously variable transmission(CVT) system working under transient operating conditions, a new CVT equipped with planetary gear mech...In order to solve the problem of weak power performance of vehicle equipped with continuously variable transmission(CVT) system working under transient operating conditions, a new CVT equipped with planetary gear mechanism and flywheel was researched, a design method of transmission parameter optimization was proposed, and the comprehensive matching control strategy was established for the new transmission system. Fuzzy controllers for throttle opening and CVT speed ratio were designed, and power performance and fuel economy of both vehicles respectively equipped with conventional CVT system and new transmission system wrere compared and analyzed by simulation. The results show that power performance and fuel economy of the vehicle equipped with new transmission system are better than that equipped with conventional CVT, thus the rationality of the parameter design method and control algorithm are verified.展开更多
The principle and characteristics of hydrostatic gas lubricated non-contacting mechanical seal (HSGLNMS) are introduced. The flow field of the gas film is established by numerical analysis of end faces of HSGLNMS. T...The principle and characteristics of hydrostatic gas lubricated non-contacting mechanical seal (HSGLNMS) are introduced. The flow field of the gas film is established by numerical analysis of end faces of HSGLNMS. The distribution of gas film pressure and seal performance parameters inclu- ding opening force and leakage are obtained. Influence of operating parameters and sealing configu- ration on the sealing performance is studied. HSGLNMS has been designed and manufactured. Its working film thickness and leakage are measured to verify the theoretical analysis. The investigation results show that HSGLNMS demonstrates good speed adaptability, which means that the seal runs successfully with both low and high speed, showing excellent performance. The seal can be regula- ted and controlled online ; the opening force will not be raised greatly with the increasing of the num- ber of throttle orifices, but the leakage of seal increases apparently ; the uniform pressure groove im- proves the sealing performance, for example, opening force and stiffness are raised obviously. While leakage is reduced. Finally, the theoretical analysis is verified by experiment.展开更多
This study numerically analyzes the unsteady flow around the Darrieus-type turbine by using FLUENT and deals with the application to the design of blades. Two kinds of blade sections were used in this study. Unsteady ...This study numerically analyzes the unsteady flow around the Darrieus-type turbine by using FLUENT and deals with the application to the design of blades. Two kinds of blade sections were used in this study. Unsteady RANS equation and the turbulence model, either k-e or k-co model, which are appropriate for each blade section, were employed. First for the NACA 634-021 blade that the experimental data is available, the 2-dimensional and 3-dimensional numerical analyses have been performed and compared with the experimental result. For the optimization of the turbine, the parametric study has been performed to check the performance in accordance with the changes in the number of blades, solidity and camber. It is demonstrated that the present approach could draw the turbine characteristics better in performance than the existing turbine. Next for the NACA 653-018 blade with the high lift-drag ratio from the purpose of developing highly-efficient turbine, this study has also tried to get the highly efficient turbine specifications by analyzing the performance while using 2-dimensional and 3-dimensional numerical analyses and the result was verified through the experiment. According to the present study, it is concluded that the 3-dimensional numerical analysis has simulated the experimental values relatively well and also, the 2-dimensional analysis can be a useful tool in the parametric study for the turbine design.展开更多
Although the FCC process has been used for more than halfa century, new and important developments continue to be made in several areas. Some of these new developments are a direct response to environmental regulation...Although the FCC process has been used for more than halfa century, new and important developments continue to be made in several areas. Some of these new developments are a direct response to environmental regulation. Sulfur oxides (SOx-SO2+SO3) emitted from fluid catalytic cracking units (FCCU) are one of the most hazardous atmospheric pollutants, which may cause serious environmental problems such as the formation of acid rain and the destruction of the ozone layer. Thus, great attention has been focused on the SOx removal from FCC in last few years. The present papers will focus on the spinel material studies include three samples they were prepared by acidic method, solid solution MgAl2O4, solid solution with cerium10%Ce/MgAl2O4, iron mixed spinel with cerium 10%Ce/MgAl2-xFeO4.MgO and two samples solid solution with cerium introduce by vanadium as second co-catalyst prepared by basic method, 1% V/10%Ce/MgAl2O4.MgO were tested in TGA for oxidation half cycle to study some parameters effect on performance of SOx additives in TGA under condition similar to those of FCC units. Thermogravimetry analysis experiments have been used to demonstrate the pick-up and release of sulfur oxides in the development of additives for SOx control in the FCCU.展开更多
This paper describes an effective methodology for evaluation of the suspension parameters intended to be used for a terrain vehicle. The objective of this approach is to make quick analyses of the sensitivity of the v...This paper describes an effective methodology for evaluation of the suspension parameters intended to be used for a terrain vehicle. The objective of this approach is to make quick analyses of the sensitivity of the vehicle suspension parameters. For the purpose of developing such a methodology, a mathematical modeling of a quarter vehicles suspension system is developed. Sensitive analysis of the suspension parameters is performed by employing the standard deviation of the vehicle body acceleration, dynamic tire load, and suspension travel. Sensitivity analysis results have shown that the spring stiffness, damping coefficient, tire stiffness and sprung mass have substantial influence on the ride comfort and road holding, while un-sprung mass on the other side has much lower impact in performance of the vehicle suspension system.展开更多
In this paper, a study related to the expected performance behaviour of present 3-level cache system for multi-core systems is presented. For this a queuing model for present 3-level cache system for multi-core proces...In this paper, a study related to the expected performance behaviour of present 3-level cache system for multi-core systems is presented. For this a queuing model for present 3-level cache system for multi-core processors is developed and its possible performance has been analyzed with the increase in number of cores. Various important performance parameters like access time and utilization of individual cache at different level and overall average access time of the cache system is determined. Results for up to 1024 cores have been reported in this paper.展开更多
基金The National Natural Science Foundation of China(No.51278118)the Natural Science Foundation of Jiangsu Province(No.BK2012756)the Key Project of Ministry of Education of China(No.113029A)
文摘In order to improve the load capacity, seismic performance and performance-cost ratio of the columns, the concrete at the base of reinforced concrete (RC) columns is substituted with engineered cementitious composites (ECC) to form ECC/RC composite columns. Based on the existing material properties, the mechanical behaviors of the ECC columns, ECC/RC composite columns and RC columns were numerically studied under combined vertical and horizontal loading with the software of ATENA. Then, the failure mechanism of ECC columns and ECC/RC composite columns were comprehensively studied and compared with that of the RC columns. Then, the effects of the height of the ECC, the axial compression ratio, and the transverse reinforcement ratio on the mechanical behaviors of the composite or the ECC column are studied. The calculation results show that the ultimate load capacity, ductility and crack resistance of the ECC or ECC/RC composite columns are superior to those of the RC columns. The ECC/RC composite column with a height of the ECC layer of 1.2h ( h is the height of the cross section) can achieve similar mechanical properties of a full ECC column. With high shear strength, ECC can undertake the shear force and significantly reduce the amount of stirrups, avoiding construction issues and promoting its engineering application.
基金Projects(51908125,51978155) supported by the National Natural Science Foundation of ChinaProject(W03070080)supported by the National Ten Thousand Talent Program for Young Top-notch Talents,China+1 种基金Project(BK20190359)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(BE2018120) supported by the Key Research and Development Plan of Jiangsu Province,China。
文摘The buffeting performance of kilometer-level high-speed railway suspension bridges has a great impact on the smooth operation of high-speed trains.To investigate the buffeting performance of the structure significantly different from traditional suspension bridges,the first long-span high-speed railway suspension bridge,Wufengshan Yangtze River Bridge(WYRB),is taken as a numerical example to demonstrate the effects of structural parameters and wind field parameters on the buffeting responses.Based on the design information,the spatial finite element model(FEM)of WYRB is established before testing its accuracy.The fluctuating wind fields are simulated via both classical and stochastic wave based spectral representation method(SRM).Finite element method is further taken to analyze the parametric sensitivity on wind induced buffeting responses in time domain.The results show that the vertical displacement is more sensitive to the changing dead load than the lateral and torsional ones.The larger stiffness of the main girder and the lower sag-to-span ratio are both helpful to reduce the buffeting responses.Wind spectrum and coherence function are key influencing factors to the responses so setting proper wind field parameters are essential in the wind-resistant design stage.The analytical results can provide references for wind resistance analysis and selection of structural and fluctuating wind field parameters for similar long-span high-speed railway suspension bridges.
基金The National Natural Science Foundation of China(No.51278118)the Natural Science Foundation of Jiangsu Province(No.BK2012756)+1 种基金the Key Project of Ministry of Education of China(No.113029A)the Third Five-Year Major Scientific and Technological Project of China Metallurgical Group Corporation
文摘To improve the seismic performance of columns, engineered cementitious composite (ECC) is introduced to partially substitute concrete at the base of the columns to form ECC,/reinforced concrete ( RC) composite columns. The mechanical behaviors of the ECC/RC composite columns are numerically studied under low-cyclic loading with the finite element analysis softwareof MSC. MARC. It is found that the ECC/RC composite columns can significantly enhance the load capacity, the ductility ad energy dissipation of columns. Then, the effects of the height of the ECC, the axial compression ratio and the longitudinal reinforcement ratio on the seismic behaviors of the composite columns are parametrically studied. The results show that the ECC/RC composite column with a height of the ECC layer of 0. Sh(h is the height to the cross-section) can achieve similar seismic performance of a full ECC column. The peak load of the composite column increases significantly while the ductility decreases with the increase of the axial compression ratio. Increasing the longitudinal reinforcement ratio within a certain range can improve the ductility and energy dissipation capacity and almost has no effect on load capacity. The aalysis results ae instructive and valuable for reference in designing ECC structures.
基金Projects(51808300,51778302)supported by the National Natural Science Foundation of ChinaProject supported by the K.C.Wong Magna Fund in Ningbo University,China。
文摘Thermogravimetric analysis and electrical resistivity were used to determine the hydration process of cement paste with rice husk ash(RHA)(0−15%)and water-cement ratio of 0.4 in this work.X-ray diffraction(XRD)method and scanning electron microscopy(SEM)were used to survey crystal composition and microstructures of specimens cured for 3 h,1 d,7 d and 28 d.Finally,electrical parameters(electrical resistance and AC impedance spectroscopy)of steel bars reinforced cement paste were investigated to study the effect of RHA on the corrosion resistance.Results showed that RHA could affect the cement hydration by hydration promotion and pozzolanic effect.The evaluation function for electrical resistivity and curing ages fitted well with linear increasing function.The addition of RHA higher than 5%demonstrated a decreasing role in the electrical resistivity of cement paste at earlier curing ages(3−7 d).Meanwhile,when at later curing ages(7−28 d)the result was the opposite.Moreover,RHA demonstrated positive effects on corrosion resistance of steel bars in cement paste.
基金Project(2011BA3019)supported by the Chongqing Natural Science Foundation,China
文摘In order to solve the problem of weak power performance of vehicle equipped with continuously variable transmission(CVT) system working under transient operating conditions, a new CVT equipped with planetary gear mechanism and flywheel was researched, a design method of transmission parameter optimization was proposed, and the comprehensive matching control strategy was established for the new transmission system. Fuzzy controllers for throttle opening and CVT speed ratio were designed, and power performance and fuel economy of both vehicles respectively equipped with conventional CVT system and new transmission system wrere compared and analyzed by simulation. The results show that power performance and fuel economy of the vehicle equipped with new transmission system are better than that equipped with conventional CVT, thus the rationality of the parameter design method and control algorithm are verified.
基金Supported by the National Natural Science Foundation of China ( No. 50635010 ) and the National Key Basic Research Program of China (2012CB026000).
文摘The principle and characteristics of hydrostatic gas lubricated non-contacting mechanical seal (HSGLNMS) are introduced. The flow field of the gas film is established by numerical analysis of end faces of HSGLNMS. The distribution of gas film pressure and seal performance parameters inclu- ding opening force and leakage are obtained. Influence of operating parameters and sealing configu- ration on the sealing performance is studied. HSGLNMS has been designed and manufactured. Its working film thickness and leakage are measured to verify the theoretical analysis. The investigation results show that HSGLNMS demonstrates good speed adaptability, which means that the seal runs successfully with both low and high speed, showing excellent performance. The seal can be regula- ted and controlled online ; the opening force will not be raised greatly with the increasing of the num- ber of throttle orifices, but the leakage of seal increases apparently ; the uniform pressure groove im- proves the sealing performance, for example, opening force and stiffness are raised obviously. While leakage is reduced. Finally, the theoretical analysis is verified by experiment.
文摘This study numerically analyzes the unsteady flow around the Darrieus-type turbine by using FLUENT and deals with the application to the design of blades. Two kinds of blade sections were used in this study. Unsteady RANS equation and the turbulence model, either k-e or k-co model, which are appropriate for each blade section, were employed. First for the NACA 634-021 blade that the experimental data is available, the 2-dimensional and 3-dimensional numerical analyses have been performed and compared with the experimental result. For the optimization of the turbine, the parametric study has been performed to check the performance in accordance with the changes in the number of blades, solidity and camber. It is demonstrated that the present approach could draw the turbine characteristics better in performance than the existing turbine. Next for the NACA 653-018 blade with the high lift-drag ratio from the purpose of developing highly-efficient turbine, this study has also tried to get the highly efficient turbine specifications by analyzing the performance while using 2-dimensional and 3-dimensional numerical analyses and the result was verified through the experiment. According to the present study, it is concluded that the 3-dimensional numerical analysis has simulated the experimental values relatively well and also, the 2-dimensional analysis can be a useful tool in the parametric study for the turbine design.
文摘Although the FCC process has been used for more than halfa century, new and important developments continue to be made in several areas. Some of these new developments are a direct response to environmental regulation. Sulfur oxides (SOx-SO2+SO3) emitted from fluid catalytic cracking units (FCCU) are one of the most hazardous atmospheric pollutants, which may cause serious environmental problems such as the formation of acid rain and the destruction of the ozone layer. Thus, great attention has been focused on the SOx removal from FCC in last few years. The present papers will focus on the spinel material studies include three samples they were prepared by acidic method, solid solution MgAl2O4, solid solution with cerium10%Ce/MgAl2O4, iron mixed spinel with cerium 10%Ce/MgAl2-xFeO4.MgO and two samples solid solution with cerium introduce by vanadium as second co-catalyst prepared by basic method, 1% V/10%Ce/MgAl2O4.MgO were tested in TGA for oxidation half cycle to study some parameters effect on performance of SOx additives in TGA under condition similar to those of FCC units. Thermogravimetry analysis experiments have been used to demonstrate the pick-up and release of sulfur oxides in the development of additives for SOx control in the FCCU.
文摘This paper describes an effective methodology for evaluation of the suspension parameters intended to be used for a terrain vehicle. The objective of this approach is to make quick analyses of the sensitivity of the vehicle suspension parameters. For the purpose of developing such a methodology, a mathematical modeling of a quarter vehicles suspension system is developed. Sensitive analysis of the suspension parameters is performed by employing the standard deviation of the vehicle body acceleration, dynamic tire load, and suspension travel. Sensitivity analysis results have shown that the spring stiffness, damping coefficient, tire stiffness and sprung mass have substantial influence on the ride comfort and road holding, while un-sprung mass on the other side has much lower impact in performance of the vehicle suspension system.
文摘In this paper, a study related to the expected performance behaviour of present 3-level cache system for multi-core systems is presented. For this a queuing model for present 3-level cache system for multi-core processors is developed and its possible performance has been analyzed with the increase in number of cores. Various important performance parameters like access time and utilization of individual cache at different level and overall average access time of the cache system is determined. Results for up to 1024 cores have been reported in this paper.