A nonparametric Bayesian method is presented to classify the MPSK (M-ary phase shift keying) signals. The MPSK signals with unknown signal noise ratios (SNRs) are modeled as a Gaussian mixture model with unknown m...A nonparametric Bayesian method is presented to classify the MPSK (M-ary phase shift keying) signals. The MPSK signals with unknown signal noise ratios (SNRs) are modeled as a Gaussian mixture model with unknown means and covariances in the constellation plane, and a clustering method is proposed to estimate the probability density of the MPSK signals. The method is based on the nonparametric Bayesian inference, which introduces the Dirichlet process as the prior probability of the mixture coefficient, and applies a normal inverse Wishart (NIW) distribution as the prior probability of the unknown mean and covariance. Then, according to the received signals, the parameters are adjusted by the Monte Carlo Markov chain (MCMC) random sampling algorithm. By iterations, the density estimation of the MPSK signals can be estimated. Simulation results show that the correct recognition ratio of 2/4/8PSK is greater than 95% under the condition that SNR 〉5 dB and 1 600 symbols are used in this method.展开更多
Generalized linear measurement error models, such as Gaussian regression, Poisson regression and logistic regression, are considered. To eliminate the effects of measurement error on parameter estimation, a corrected ...Generalized linear measurement error models, such as Gaussian regression, Poisson regression and logistic regression, are considered. To eliminate the effects of measurement error on parameter estimation, a corrected empirical likelihood method is proposed to make statistical inference for a class of generalized linear measurement error models based on the moment identities of the corrected score function. The asymptotic distribution of the empirical log-likelihood ratio for the regression parameter is proved to be a Chi-squared distribution under some regularity conditions. The corresponding maximum empirical likelihood estimator of the regression parameter π is derived, and the asymptotic normality is shown. Furthermore, we consider the construction of the confidence intervals for one component of the regression parameter by using the partial profile empirical likelihood. Simulation studies are conducted to assess the finite sample performance. A real data set from the ACTG 175 study is used for illustrating the proposed method.展开更多
This paper considers the additive hazards iliary covariate information to improve the efficiency regression analysis by utilizing continuous aux- of the statistical inference when the primary covariate is ascertained ...This paper considers the additive hazards iliary covariate information to improve the efficiency regression analysis by utilizing continuous aux- of the statistical inference when the primary covariate is ascertained only for a randomly selected subsample. The authors construct a martingale based estimating equation for the regression parameter and establish the asymptotic consistency and normality of the resultant estimators. Simulation study shows that the proposed method can greatly improve the efficiency compared with the estimator which discards the auxiliary covariate information in a variety of settings. A real example is also provided as an illustration.展开更多
基金Cultivation Fund of the Key Scientific and Technical Innovation Project of Ministry of Education of China(No.3104001014)
文摘A nonparametric Bayesian method is presented to classify the MPSK (M-ary phase shift keying) signals. The MPSK signals with unknown signal noise ratios (SNRs) are modeled as a Gaussian mixture model with unknown means and covariances in the constellation plane, and a clustering method is proposed to estimate the probability density of the MPSK signals. The method is based on the nonparametric Bayesian inference, which introduces the Dirichlet process as the prior probability of the mixture coefficient, and applies a normal inverse Wishart (NIW) distribution as the prior probability of the unknown mean and covariance. Then, according to the received signals, the parameters are adjusted by the Monte Carlo Markov chain (MCMC) random sampling algorithm. By iterations, the density estimation of the MPSK signals can be estimated. Simulation results show that the correct recognition ratio of 2/4/8PSK is greater than 95% under the condition that SNR 〉5 dB and 1 600 symbols are used in this method.
基金supported by National Natural Science Foundation of China(Grant Nos.11301569,11471029 and 11101014)the Beijing Natural Science Foundation(Grant No.1142002)+2 种基金the Science and Technology Project of Beijing Municipal Education Commission(Grant No.KM201410005010)Hong Kong Research Grant(Grant No.HKBU202711)Hong Kong Baptist University FRG Grants(Grant Nos.FRG2/11-12/110 and FRG1/13-14/018)
文摘Generalized linear measurement error models, such as Gaussian regression, Poisson regression and logistic regression, are considered. To eliminate the effects of measurement error on parameter estimation, a corrected empirical likelihood method is proposed to make statistical inference for a class of generalized linear measurement error models based on the moment identities of the corrected score function. The asymptotic distribution of the empirical log-likelihood ratio for the regression parameter is proved to be a Chi-squared distribution under some regularity conditions. The corresponding maximum empirical likelihood estimator of the regression parameter π is derived, and the asymptotic normality is shown. Furthermore, we consider the construction of the confidence intervals for one component of the regression parameter by using the partial profile empirical likelihood. Simulation studies are conducted to assess the finite sample performance. A real data set from the ACTG 175 study is used for illustrating the proposed method.
基金supported by the National Natural Science Foundation of China under Grant Nos.11171263,41261087the Doctoral Fund of Ministry of Education of China under Grant Nos.20110141110004,20110141120004
文摘This paper considers the additive hazards iliary covariate information to improve the efficiency regression analysis by utilizing continuous aux- of the statistical inference when the primary covariate is ascertained only for a randomly selected subsample. The authors construct a martingale based estimating equation for the regression parameter and establish the asymptotic consistency and normality of the resultant estimators. Simulation study shows that the proposed method can greatly improve the efficiency compared with the estimator which discards the auxiliary covariate information in a variety of settings. A real example is also provided as an illustration.