In this paper we propose an absolute error loss EB estimator for parameter of one-side truncation distribution families. Under some conditions we have proved that the convergence rates of its Bayes risk is o, where 0&...In this paper we propose an absolute error loss EB estimator for parameter of one-side truncation distribution families. Under some conditions we have proved that the convergence rates of its Bayes risk is o, where 0<λ,r≤1,Mn≤lnln n (for large n),Mn→∞ as n→∞.展开更多
Permanent Magnet Synchronous Motor model can exhibit a variety of chaotic phenomena under some choices of system parameters and external input. Based on the property of passive system, the essential conditions were st...Permanent Magnet Synchronous Motor model can exhibit a variety of chaotic phenomena under some choices of system parameters and external input. Based on the property of passive system, the essential conditions were studied, by which Permanent Magnet Synchronous Motor chaotic system could be equivalent to passive system. Using Lyapunov stability theory, the convergence condition deciding the system's characters was discussed. In the convergence condition area, the equivalent passive system could be globally asymptotically stabilized by smooth state feedback.展开更多
文摘In this paper we propose an absolute error loss EB estimator for parameter of one-side truncation distribution families. Under some conditions we have proved that the convergence rates of its Bayes risk is o, where 0<λ,r≤1,Mn≤lnln n (for large n),Mn→∞ as n→∞.
基金Supported by the National Natural Science Foundation of China(10971102)the Natural Science Foundation of Jiangsu Province of China(BK2009398)+1 种基金the Foundation for the Authors of the National Excellent Doctoral Thesis Award of China(200720)Jiangsu Innovation Fund for Doctor of Science(CX07B-027z)
基金Project supported by the National Natural Science Foundation of China (No. 60374013) and the Natural Science Foundation of Zhejiang Province (No. M603217), China
文摘Permanent Magnet Synchronous Motor model can exhibit a variety of chaotic phenomena under some choices of system parameters and external input. Based on the property of passive system, the essential conditions were studied, by which Permanent Magnet Synchronous Motor chaotic system could be equivalent to passive system. Using Lyapunov stability theory, the convergence condition deciding the system's characters was discussed. In the convergence condition area, the equivalent passive system could be globally asymptotically stabilized by smooth state feedback.