The performance-based passive control analysis of the Maxwell dampers between one 10-story and one 6-story adjacent RC frames is conducted in this work.Not only the optimal parameters but also the optimal arrangements...The performance-based passive control analysis of the Maxwell dampers between one 10-story and one 6-story adjacent RC frames is conducted in this work.Not only the optimal parameters but also the optimal arrangements of the Maxwell dampers are proposed based on the optimal target of making the total exceeding probability of the adjacent structures to be minimal.The applicability of the analytical expressions of the Maxwell damper damping parameters under different seismic performance targets are firstly examined and then the preferable damping parameters of the Maxwell dampers are proposed through the extensive parametric studies.Furthermore,the optimal arranging positions and optimal arranging numbers of the Maxwell dampers between the adjacent buildings are derived based on a large number of seismic fragility analyses,as well.The general arranging laws of the Maxwell dampers between the adjacent buildings are generated based on the discussion of the theoretical method through the simplified plane model.The optimal parameters and optimal arrangement of the Maxwell dampers presented make both the adjacent structures have preferable controlled effects under each seismic performance target which can satisfy the requirements of multi-performance seismic resistance of the modern seismic codes.展开更多
This paper presents an effective approach for updating finite element dynamic model from incomplete modal data identified from ambient vibration measurements.The proposed method is based on the relationship between th...This paper presents an effective approach for updating finite element dynamic model from incomplete modal data identified from ambient vibration measurements.The proposed method is based on the relationship between the perturbation of structural parameters such as stiffness and mass changes and the modal data measurements of the tested structure such as measured mode shape readings.Structural updating parameters including both stiffness and mass parameters are employed to represent the differences in structural parameters between the finite element model and the associated tested structure.These updating parameters are then evaluated by an iterative solution procedure,giving optimised solutions in the least squares sense without requiring an optimisation technique.In order to reduce the influence of modal measurement uncertainty,the truncated singular value decomposition regularization method incorporating the quasi-optimality criterion is employed to produce reliable solutions for the structural updating parameters.Finally,the numerical investigations of a space frame structure and the practical applications to the Canton Tower benchmark problem demonstrate that the proposed method can correctly update the given finite element model using the incomplete modal data identified from the recorded ambient vibration measurements.展开更多
The problems of ITRF2008,the latest International Terrestrial Reference Frame,are pointed out and analyzed as follows:(1) ITRF is not a mm-level Terrestrial Reference Frame;(2) the origin of ITRF is neither the Earth&...The problems of ITRF2008,the latest International Terrestrial Reference Frame,are pointed out and analyzed as follows:(1) ITRF is not a mm-level Terrestrial Reference Frame;(2) the origin of ITRF is neither the Earth's center of mass (CM) nor the center of figure (CF);(3) the scale of ITRF is not a uniform system in the sense of the gravitational theory of relativity.These problems result from the linear hypothesis used in the establishment and maintenance of ITRF,which includes the linear hypothesis of the coordinates definition of the ITRF reference stations,and the seven coordinate transformation parameters (three translation parameters,three rotation parameters,and one scale parameter) when the ITRF combine solution is constructed.The linear hypothesis of the ITRF construction leads to the current terrestrial reference frame only at the cm-level,which cannot satisfy the requirements of monitoring mm-level crust movements as well as the global environment.This article points out that the construction of a mm-level Terrestrial Reference Frame is actually a leap from linear to nonlinear.Therefore,according to the main characteristics of nonlinear changes of the crust's deformation,the geocenter motion and the overall height fluctuation of the Earth,the new ITRF station coordinates definition and the new observation equations of combined solutions are constructed for the realization of a mm-level nonlinear ITRF,which can solve the problems of the current ITRF.展开更多
基金Projects(51408443,51178203)supported by the National Natural Science Foundation of ChinaProject(K201511)supported by the Science Foundation of Wuhan Institute of Technology,China
文摘The performance-based passive control analysis of the Maxwell dampers between one 10-story and one 6-story adjacent RC frames is conducted in this work.Not only the optimal parameters but also the optimal arrangements of the Maxwell dampers are proposed based on the optimal target of making the total exceeding probability of the adjacent structures to be minimal.The applicability of the analytical expressions of the Maxwell damper damping parameters under different seismic performance targets are firstly examined and then the preferable damping parameters of the Maxwell dampers are proposed through the extensive parametric studies.Furthermore,the optimal arranging positions and optimal arranging numbers of the Maxwell dampers between the adjacent buildings are derived based on a large number of seismic fragility analyses,as well.The general arranging laws of the Maxwell dampers between the adjacent buildings are generated based on the discussion of the theoretical method through the simplified plane model.The optimal parameters and optimal arrangement of the Maxwell dampers presented make both the adjacent structures have preferable controlled effects under each seismic performance target which can satisfy the requirements of multi-performance seismic resistance of the modern seismic codes.
文摘This paper presents an effective approach for updating finite element dynamic model from incomplete modal data identified from ambient vibration measurements.The proposed method is based on the relationship between the perturbation of structural parameters such as stiffness and mass changes and the modal data measurements of the tested structure such as measured mode shape readings.Structural updating parameters including both stiffness and mass parameters are employed to represent the differences in structural parameters between the finite element model and the associated tested structure.These updating parameters are then evaluated by an iterative solution procedure,giving optimised solutions in the least squares sense without requiring an optimisation technique.In order to reduce the influence of modal measurement uncertainty,the truncated singular value decomposition regularization method incorporating the quasi-optimality criterion is employed to produce reliable solutions for the structural updating parameters.Finally,the numerical investigations of a space frame structure and the practical applications to the Canton Tower benchmark problem demonstrate that the proposed method can correctly update the given finite element model using the incomplete modal data identified from the recorded ambient vibration measurements.
基金supported by the National Natural Science Foundation of China (Grant No.10603011)the National High Technology Research and Development Program (Grant No.2009AA12Z307)+1 种基金the Science and Technology Commission of Shanghai Municipality (Grant Nos.05QMX1462 and 08ZR1422400)the Youth Foundation of Knowledge Innovation Project of the Chinese Academy of Sciences,Shanghai Astronomical Observatory (Grant No.5120090304)
文摘The problems of ITRF2008,the latest International Terrestrial Reference Frame,are pointed out and analyzed as follows:(1) ITRF is not a mm-level Terrestrial Reference Frame;(2) the origin of ITRF is neither the Earth's center of mass (CM) nor the center of figure (CF);(3) the scale of ITRF is not a uniform system in the sense of the gravitational theory of relativity.These problems result from the linear hypothesis used in the establishment and maintenance of ITRF,which includes the linear hypothesis of the coordinates definition of the ITRF reference stations,and the seven coordinate transformation parameters (three translation parameters,three rotation parameters,and one scale parameter) when the ITRF combine solution is constructed.The linear hypothesis of the ITRF construction leads to the current terrestrial reference frame only at the cm-level,which cannot satisfy the requirements of monitoring mm-level crust movements as well as the global environment.This article points out that the construction of a mm-level Terrestrial Reference Frame is actually a leap from linear to nonlinear.Therefore,according to the main characteristics of nonlinear changes of the crust's deformation,the geocenter motion and the overall height fluctuation of the Earth,the new ITRF station coordinates definition and the new observation equations of combined solutions are constructed for the realization of a mm-level nonlinear ITRF,which can solve the problems of the current ITRF.