Among the available clustering algorithms in data mining, the CLOPE algorithm attracts much more attention with its high speed and good performance. However, the proper choice of some parameters in the CLOPE algorithm...Among the available clustering algorithms in data mining, the CLOPE algorithm attracts much more attention with its high speed and good performance. However, the proper choice of some parameters in the CLOPE algorithm directly affects the validity of the clustering results, which is still an open issue. For this purpose, this paper proposes a fuzzy CLOPE algorithm, and presents a method for the optimal parameter choice by defining a modified partition fuzzy degree as a clustering validity function. The experimental results with real data set illustrate the effectiveness of the proposed fuzzy CLOPE algorithm and optimal parameter choice method based on the modified partition fuzzy degree.展开更多
A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator(partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy syst...A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator(partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy system, and an improved subtractive clustering algorithm in the fuzzy-rule-selecting phase. The weights obtained in PRM, which gives protection against noise and outliers, were incorporated into the potential measure of the subtractive cluster algorithm to enhance the robustness of the fuzzy rule cluster process, and a compact Mamdani-type fuzzy system was established after the parameters in the consequent parts of rules were re-estimated by partial least squares(PLS). The main characteristics of the new approach were its simplicity and ability to construct fuzzy system fast and robustly. Simulation and experiment results show that the proposed approach can achieve satisfactory results in various kinds of data domains with noise and outliers. Compared with D-SVD and ARRBFN, the proposed approach yields much fewer rules and less RMSE values.展开更多
基金Supported by the National Natural Science Foundation of China (No.60202004).
文摘Among the available clustering algorithms in data mining, the CLOPE algorithm attracts much more attention with its high speed and good performance. However, the proper choice of some parameters in the CLOPE algorithm directly affects the validity of the clustering results, which is still an open issue. For this purpose, this paper proposes a fuzzy CLOPE algorithm, and presents a method for the optimal parameter choice by defining a modified partition fuzzy degree as a clustering validity function. The experimental results with real data set illustrate the effectiveness of the proposed fuzzy CLOPE algorithm and optimal parameter choice method based on the modified partition fuzzy degree.
基金Project(61473298)supported by the National Natural Science Foundation of ChinaProject(2015QNA65)supported by Fundamental Research Funds for the Central Universities,China
文摘A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator(partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy system, and an improved subtractive clustering algorithm in the fuzzy-rule-selecting phase. The weights obtained in PRM, which gives protection against noise and outliers, were incorporated into the potential measure of the subtractive cluster algorithm to enhance the robustness of the fuzzy rule cluster process, and a compact Mamdani-type fuzzy system was established after the parameters in the consequent parts of rules were re-estimated by partial least squares(PLS). The main characteristics of the new approach were its simplicity and ability to construct fuzzy system fast and robustly. Simulation and experiment results show that the proposed approach can achieve satisfactory results in various kinds of data domains with noise and outliers. Compared with D-SVD and ARRBFN, the proposed approach yields much fewer rules and less RMSE values.