Surface textures had long been recognized as primary factors to provide the skid resistance on pavements; however, no measurement of skid resistance on pervious concrete pavement with various surface texture parameter...Surface textures had long been recognized as primary factors to provide the skid resistance on pavements; however, no measurement of skid resistance on pervious concrete pavement with various surface texture parameters had been made. Fractal geometry was introduced in the present work to accurately simulate transect contour curves of pervious concrete specimens through fractal interpolation. It is proved that its fractal dimension (D) can be adopted to measure the skid resistance on pervious concrete pavement, overcoming the shortcomings of both macrotexture depth (DT ) and British portable pendulum number (NBP). Combined with Fujikawa-Koike tire/road contact model, the optimization method of all surface textures was recommended for designing and constructing excellently skid-resistant and noise-absorptive pervious concrete pavement. In addition, evaluating of the abrasion process and attenuation of the surface textures on concrete pavement slabs was also the focus of this work based on accelerated abrasion test. Results show that the surface textures on pervious concrete pavement slabs is extremely durable, compared to those on conventional grooved or exposed aggregate concrete pavement slabs.展开更多
To explore the problems of monitoring chemical processes with large numbers of input parameters, a method based on Auto-associative Hierarchical Neural Network(AHNN) is proposed. AHNN focuses on dealing with datasets ...To explore the problems of monitoring chemical processes with large numbers of input parameters, a method based on Auto-associative Hierarchical Neural Network(AHNN) is proposed. AHNN focuses on dealing with datasets in high-dimension. AHNNs consist of two parts: groups of subnets based on well trained Autoassociative Neural Networks(AANNs) and a main net. The subnets play an important role on the performance of AHNN. A simple but effective method of designing the subnets is developed in this paper. In this method,the subnets are designed according to the classification of the data attributes. For getting the classification, an effective method called Extension Data Attributes Classification(EDAC) is adopted. Soft sensor using AHNN based on EDAC(EDAC-AHNN) is introduced. As a case study, the production data of Purified Terephthalic Acid(PTA) solvent system are selected to examine the proposed model. The results of the EDAC-AHNN model are compared with the experimental data extracted from the literature, which shows the efficiency of the proposed model.展开更多
Due to the intense vibration durirLg launching and rigorous orbital temperature environment, the kinematic parameters of space robot may be largely deviated from their nominal parameters. The disparity will cause the ...Due to the intense vibration durirLg launching and rigorous orbital temperature environment, the kinematic parameters of space robot may be largely deviated from their nominal parameters. The disparity will cause the real pose (including position and orientation) of the end effector not to match the desired one, and further hinder the space robot from performing the scheduled mission. To improve pose accuracy of space robot, a new self-calibration method using the distance measurement provided by a laser-ranger fixed on the end-effector is proposed. A distance-measurement model of the space robot is built according to the distance from the starting point of the laser beam to the intersection point at the declining plane. Based on the model, the cost function about the pose error is derived. The kinematic calibration is transferred to a non-linear system optimization problem, which is solved by the improved differential evolution (DE) algoritlun. A six-degree of freedom (6-DOF) robot is used as a practical simulation example, and the simulation results show: 1) A significant improvement of pose accuracy of space robot can be obtained by distance measurement only; 2) Search efficiency is increased by improved DE; 3) More calibration configurations may make calibration results better.展开更多
The conventional quality control method of core rocldill dam construction exhibit difficulty controlling compaction parameters accurately or ensuring construction quality. This is because it is easily influenced by hu...The conventional quality control method of core rocldill dam construction exhibit difficulty controlling compaction parameters accurately or ensuring construction quality. This is because it is easily influenced by human behavior or lack of adequate management. We therefore establish the timely monitoring indexes and control criteria of compaction processes by considering the characteristics and quality requirements of high core rockffll dam construction. Based on the established indexes and criteria, integrating GPS, GPRS and PDA technologies, a real-time compaction quality monitoring method is proposed. The relevant key techniques are proposed as well, including automatic collection of information and a graphic algorithm for rolling-process visualization. By the proposed method and techniques, a real-time monitoring system is provided to realize the precise automatic online entire-process monitoring of compaction parameters, including compaction pass, rolling trajectory, nmning speed of roller, vibration status and rolled pavement thickness. The application of the Nuozhadu project shows that the proposed system can control compaction parameters effectively and ensure better construction quality. Therefore, it might become a new way towards construction quality control of high core rockfill dam.展开更多
A high-speed digital camera is used to record the saltation of three sand samples(diameter range:300–500,200–300 and100–125μm).This is followed by an overlapping particle tracking algorithm to reconstruct the salt...A high-speed digital camera is used to record the saltation of three sand samples(diameter range:300–500,200–300 and100–125μm).This is followed by an overlapping particle tracking algorithm to reconstruct the saltating trajectory and the differential scheme to abstract the kinetic parameters of saltating grains.The velocity results confirm the propagating feature of saltation in maintaining near-face aeolian sand transport.Moreover,the acceleration of saltating sand grains was obtained directly from the reconstructed trajectory,and the results reveal that the climbing stage of the saltating trajectory represents an critical process of energy transfer while the sand grains travel through air.展开更多
基金Project(kfj080205) supported by Key Laboratory of Road Structure and Material of Ministry of Transport of Changsha, China
文摘Surface textures had long been recognized as primary factors to provide the skid resistance on pavements; however, no measurement of skid resistance on pervious concrete pavement with various surface texture parameters had been made. Fractal geometry was introduced in the present work to accurately simulate transect contour curves of pervious concrete specimens through fractal interpolation. It is proved that its fractal dimension (D) can be adopted to measure the skid resistance on pervious concrete pavement, overcoming the shortcomings of both macrotexture depth (DT ) and British portable pendulum number (NBP). Combined with Fujikawa-Koike tire/road contact model, the optimization method of all surface textures was recommended for designing and constructing excellently skid-resistant and noise-absorptive pervious concrete pavement. In addition, evaluating of the abrasion process and attenuation of the surface textures on concrete pavement slabs was also the focus of this work based on accelerated abrasion test. Results show that the surface textures on pervious concrete pavement slabs is extremely durable, compared to those on conventional grooved or exposed aggregate concrete pavement slabs.
基金Supported by the National Natural Science Foundation of China(61074153)
文摘To explore the problems of monitoring chemical processes with large numbers of input parameters, a method based on Auto-associative Hierarchical Neural Network(AHNN) is proposed. AHNN focuses on dealing with datasets in high-dimension. AHNNs consist of two parts: groups of subnets based on well trained Autoassociative Neural Networks(AANNs) and a main net. The subnets play an important role on the performance of AHNN. A simple but effective method of designing the subnets is developed in this paper. In this method,the subnets are designed according to the classification of the data attributes. For getting the classification, an effective method called Extension Data Attributes Classification(EDAC) is adopted. Soft sensor using AHNN based on EDAC(EDAC-AHNN) is introduced. As a case study, the production data of Purified Terephthalic Acid(PTA) solvent system are selected to examine the proposed model. The results of the EDAC-AHNN model are compared with the experimental data extracted from the literature, which shows the efficiency of the proposed model.
基金Projects(60775049,60805033) supported by National Natural Science Foundation of ChinaProject(2007AA704317) supported by the National High Technology Research and Development Program of China
文摘Due to the intense vibration durirLg launching and rigorous orbital temperature environment, the kinematic parameters of space robot may be largely deviated from their nominal parameters. The disparity will cause the real pose (including position and orientation) of the end effector not to match the desired one, and further hinder the space robot from performing the scheduled mission. To improve pose accuracy of space robot, a new self-calibration method using the distance measurement provided by a laser-ranger fixed on the end-effector is proposed. A distance-measurement model of the space robot is built according to the distance from the starting point of the laser beam to the intersection point at the declining plane. Based on the model, the cost function about the pose error is derived. The kinematic calibration is transferred to a non-linear system optimization problem, which is solved by the improved differential evolution (DE) algoritlun. A six-degree of freedom (6-DOF) robot is used as a practical simulation example, and the simulation results show: 1) A significant improvement of pose accuracy of space robot can be obtained by distance measurement only; 2) Search efficiency is increased by improved DE; 3) More calibration configurations may make calibration results better.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51021004, 51079096)the Program for New Century Excellent Talents in University (Grant No. NCET-08-0391)
文摘The conventional quality control method of core rocldill dam construction exhibit difficulty controlling compaction parameters accurately or ensuring construction quality. This is because it is easily influenced by human behavior or lack of adequate management. We therefore establish the timely monitoring indexes and control criteria of compaction processes by considering the characteristics and quality requirements of high core rockffll dam construction. Based on the established indexes and criteria, integrating GPS, GPRS and PDA technologies, a real-time compaction quality monitoring method is proposed. The relevant key techniques are proposed as well, including automatic collection of information and a graphic algorithm for rolling-process visualization. By the proposed method and techniques, a real-time monitoring system is provided to realize the precise automatic online entire-process monitoring of compaction parameters, including compaction pass, rolling trajectory, nmning speed of roller, vibration status and rolled pavement thickness. The application of the Nuozhadu project shows that the proposed system can control compaction parameters effectively and ensure better construction quality. Therefore, it might become a new way towards construction quality control of high core rockfill dam.
基金supported by the National Natural Science Foundation of China(Grant No.11272252)
文摘A high-speed digital camera is used to record the saltation of three sand samples(diameter range:300–500,200–300 and100–125μm).This is followed by an overlapping particle tracking algorithm to reconstruct the saltating trajectory and the differential scheme to abstract the kinetic parameters of saltating grains.The velocity results confirm the propagating feature of saltation in maintaining near-face aeolian sand transport.Moreover,the acceleration of saltating sand grains was obtained directly from the reconstructed trajectory,and the results reveal that the climbing stage of the saltating trajectory represents an critical process of energy transfer while the sand grains travel through air.