Internal model control (IMC) yields very good performance for set point tracking, but gives sluggish response for disturbance rejection problem. A two-degree-of-freedom IMC (2DOF-IMC) has been developed to overcom...Internal model control (IMC) yields very good performance for set point tracking, but gives sluggish response for disturbance rejection problem. A two-degree-of-freedom IMC (2DOF-IMC) has been developed to overcome the weakness. However, the setting of parameter becomes a complicated matter if there is an uncertainty model. The present study proposes a new tuning method for the controller. The proposed tuning method consists of three steps. Firstly, the worst case of the model uncertainty is determined. Secondly, the parameter of set point con- troller using maximum peak (Mp) criteria is specified, and finally, the parameter of the disturbance rejection con- troller using gain margin (GM) criteria is obtained. The proposed method is denoted as Mp-GM tuning method. The effectiveness of Mp-GM tuning method has evaluated and compared with IMC-controller tuning program (IMCTUNE) as bench mark. The evaluation and comparison have been done through the simulation on a number of first order plus dead time (FOPDT) and higher order processes. The FOPDT process tested includes processes with controllability ratio in the range 0.7 to 2.5. The higher processes include second order with underdarnped and third order with nonminimum phase processes. Although the two of higher order processes are considered as difficult processes, the proposed Mp-GM tuning method are able to obtain the good controller parameter even under process uncertainties.展开更多
In overcoming the drawbacks of traditional interval perturbation method due to the unpredictable effect of ignoring higher order terms,a modified parameter perturbation method is presented to predict the eigenvalue in...In overcoming the drawbacks of traditional interval perturbation method due to the unpredictable effect of ignoring higher order terms,a modified parameter perturbation method is presented to predict the eigenvalue intervals of the uncertain structures with interval parameters.In the proposed method,interval variables are used to quantitatively describe all the uncertain parameters.Different order perturbations in both eigenvalues and eigenvectors are fully considered.By retaining higher order terms,the original dynamic eigenvalue equations are transformed into interval linear equations based on the orthogonality and regularization conditions of eigenvectors.The eigenvalue ranges and corresponding eigenvectors can be approximately predicted by the parameter combinatorial approach.Compared with the Monte Carlo method,two numerical examples are given to demonstrate the accuracy and efficiency of the proposed algorithm to solve both the real eigenvalue problem and complex eigenvalue problem.展开更多
Uncertainty propagation, one of the structural engineering problems, is receiving increasing attention owing to the fact that most significant loads are random in nature and structural parameters are typically subject...Uncertainty propagation, one of the structural engineering problems, is receiving increasing attention owing to the fact that most significant loads are random in nature and structural parameters are typically subject to variation. In the study, the collocation interval analysis method based on the first class Chebyshev polynomial approximation is presented to investigate the least favorable responses and the most favorable responses of interval-parameter structures under random excitations. Compared with the interval analysis method based on the first order Taylor expansion, in which only information including the function value and derivative at midpoint is used, the collocation interval analysis method is a non-gradient algorithm using several collocation points which improve the precision of results owing to better approximation of a response function. The pseudo excitation method is introduced to the solving procedure to transform the random problem into a deterministic problem. To validate the procedure, we present numerical results concerning a building under seismic ground motion and aerofoil under continuous atmosphere turbulence to show the effectiveness of the collocation interval analysis method.展开更多
This paper presents an interval effective independence method for optimal sensor placement, which contains uncertain structural information. To overcome the lack of insufficient statistic description of uncertain para...This paper presents an interval effective independence method for optimal sensor placement, which contains uncertain structural information. To overcome the lack of insufficient statistic description of uncertain parameters, this paper treats uncertainties as non-probability intervals. Based on the iterative process of classical effective independence method, the proposed study considers the eliminating steps with uncertain cases. Therefore, this method with Fisher information matrix is extended to interval numbers, which could conform to actual engineering. As long as we know the bounds of uncertainties, the interval Fisher information matrix could be obtained conveniently by interval analysis technology. Moreover, due to the definition and calculation of the interval relationship, the possibilities of eliminating candidate sensors in each iterative process and the final layout of sensor placement are both presented in this paper. Finally, two numerical examples, including a five-storey shear structure and a truss structure are proposed respectively in this paper. Compared with Monte Carlo simulation, both of them can indicate the veracity of the interval effective independence method.展开更多
The method of processing of the non-stationary casual processes with the use of nonparametric methods of the theory of decisions is considered. The use of such methods is admissible in telemetry systems in need of pro...The method of processing of the non-stationary casual processes with the use of nonparametric methods of the theory of decisions is considered. The use of such methods is admissible in telemetry systems in need of processing at real rate of time of fast-changing casual processes in the conditions of aprioristic uncertainty about probabilistic properties of measured process.展开更多
In recent years,growing attention has been paid to the interval investigation of uncertainty problems.However,the contradiction between accuracy and efficiency always exists.In this paper,an iterative interval analysi...In recent years,growing attention has been paid to the interval investigation of uncertainty problems.However,the contradiction between accuracy and efficiency always exists.In this paper,an iterative interval analysis method based on Kriging-HDMR(IIAMKH)is proposed to obtain the lower and upper bounds of uncertainty problems considering interval variables.Firstly,Kriging-HDMR method is adopted to establish the meta-model of the response function.Then,the Genetic Algorithm&Sequential Quadratic Programing(GA&SQP)hybrid optimization method is applied to search for the minimum/maximum values of the meta-model,and thus the corresponding uncertain parameters can be obtained.By substituting them into the response function,we can acquire the predicted interval.Finally,an iterative process is developed to improve the accuracy and stability of the proposed method.Several numerical examples are investigated to demonstrate the effectiveness of the proposed method.Simulation results indicate that the presented IIAMKH can obtain more accurate results with fewer samples.展开更多
A Newton iteration-based interval uncertainty analysis method(NI-IUAM) is proposed to analyze the propagating effect of interval uncertainty in multidisciplinary systems. NI-IUAM decomposes one multidisciplinary syste...A Newton iteration-based interval uncertainty analysis method(NI-IUAM) is proposed to analyze the propagating effect of interval uncertainty in multidisciplinary systems. NI-IUAM decomposes one multidisciplinary system into single disciplines and utilizes a Newton iteration equation to obtain the upper and lower bounds of coupled state variables at each iterative step.NI-IUAM only needs to determine the bounds of uncertain parameters and does not require specific distribution formats. In this way, NI-IUAM may greatly reduce the necessity for raw data. In addition, NI-IUAM can accelerate the convergence process as a result of the super-linear convergence of Newton iteration. The applicability of the proposed method is discussed, in particular that solutions obtained in each discipline must be compatible in multidisciplinary systems. The validity and efficiency of NI-IUAM is demonstrated by both numerical and engineering examples.展开更多
基金Supported by Postgraduate Fellowship of UMP,Fundamental Research Grant Scheme of Malaysia(GRS070120)Joint Research Grant between Universiti Malaysia Pahang (UMP) and Institut Teknologi Sepuluh Nopember (ITS) Surabaya
文摘Internal model control (IMC) yields very good performance for set point tracking, but gives sluggish response for disturbance rejection problem. A two-degree-of-freedom IMC (2DOF-IMC) has been developed to overcome the weakness. However, the setting of parameter becomes a complicated matter if there is an uncertainty model. The present study proposes a new tuning method for the controller. The proposed tuning method consists of three steps. Firstly, the worst case of the model uncertainty is determined. Secondly, the parameter of set point con- troller using maximum peak (Mp) criteria is specified, and finally, the parameter of the disturbance rejection con- troller using gain margin (GM) criteria is obtained. The proposed method is denoted as Mp-GM tuning method. The effectiveness of Mp-GM tuning method has evaluated and compared with IMC-controller tuning program (IMCTUNE) as bench mark. The evaluation and comparison have been done through the simulation on a number of first order plus dead time (FOPDT) and higher order processes. The FOPDT process tested includes processes with controllability ratio in the range 0.7 to 2.5. The higher processes include second order with underdarnped and third order with nonminimum phase processes. Although the two of higher order processes are considered as difficult processes, the proposed Mp-GM tuning method are able to obtain the good controller parameter even under process uncertainties.
基金supported by the National Natural Science Foundation of China(Grant No.90816024)Defense Industrial Technology Development Program(Grant Nos.A2120110001 and B2120110011)111 Project(Grant No.B07009)
文摘In overcoming the drawbacks of traditional interval perturbation method due to the unpredictable effect of ignoring higher order terms,a modified parameter perturbation method is presented to predict the eigenvalue intervals of the uncertain structures with interval parameters.In the proposed method,interval variables are used to quantitatively describe all the uncertain parameters.Different order perturbations in both eigenvalues and eigenvectors are fully considered.By retaining higher order terms,the original dynamic eigenvalue equations are transformed into interval linear equations based on the orthogonality and regularization conditions of eigenvectors.The eigenvalue ranges and corresponding eigenvectors can be approximately predicted by the parameter combinatorial approach.Compared with the Monte Carlo method,two numerical examples are given to demonstrate the accuracy and efficiency of the proposed algorithm to solve both the real eigenvalue problem and complex eigenvalue problem.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10872017, 90816024 and 10876100)111 Project (Grant No. B07009)
文摘Uncertainty propagation, one of the structural engineering problems, is receiving increasing attention owing to the fact that most significant loads are random in nature and structural parameters are typically subject to variation. In the study, the collocation interval analysis method based on the first class Chebyshev polynomial approximation is presented to investigate the least favorable responses and the most favorable responses of interval-parameter structures under random excitations. Compared with the interval analysis method based on the first order Taylor expansion, in which only information including the function value and derivative at midpoint is used, the collocation interval analysis method is a non-gradient algorithm using several collocation points which improve the precision of results owing to better approximation of a response function. The pseudo excitation method is introduced to the solving procedure to transform the random problem into a deterministic problem. To validate the procedure, we present numerical results concerning a building under seismic ground motion and aerofoil under continuous atmosphere turbulence to show the effectiveness of the collocation interval analysis method.
基金supported by the National Natural Science Foundation of China(Grant No.11502278)
文摘This paper presents an interval effective independence method for optimal sensor placement, which contains uncertain structural information. To overcome the lack of insufficient statistic description of uncertain parameters, this paper treats uncertainties as non-probability intervals. Based on the iterative process of classical effective independence method, the proposed study considers the eliminating steps with uncertain cases. Therefore, this method with Fisher information matrix is extended to interval numbers, which could conform to actual engineering. As long as we know the bounds of uncertainties, the interval Fisher information matrix could be obtained conveniently by interval analysis technology. Moreover, due to the definition and calculation of the interval relationship, the possibilities of eliminating candidate sensors in each iterative process and the final layout of sensor placement are both presented in this paper. Finally, two numerical examples, including a five-storey shear structure and a truss structure are proposed respectively in this paper. Compared with Monte Carlo simulation, both of them can indicate the veracity of the interval effective independence method.
文摘The method of processing of the non-stationary casual processes with the use of nonparametric methods of the theory of decisions is considered. The use of such methods is admissible in telemetry systems in need of processing at real rate of time of fast-changing casual processes in the conditions of aprioristic uncertainty about probabilistic properties of measured process.
基金supported by the National Natural Science Foundation of China(Grant No.11472137)the Fundamental Research Funds for the Central Universities(Grant No.309181A8801 and 30919011204).
文摘In recent years,growing attention has been paid to the interval investigation of uncertainty problems.However,the contradiction between accuracy and efficiency always exists.In this paper,an iterative interval analysis method based on Kriging-HDMR(IIAMKH)is proposed to obtain the lower and upper bounds of uncertainty problems considering interval variables.Firstly,Kriging-HDMR method is adopted to establish the meta-model of the response function.Then,the Genetic Algorithm&Sequential Quadratic Programing(GA&SQP)hybrid optimization method is applied to search for the minimum/maximum values of the meta-model,and thus the corresponding uncertain parameters can be obtained.By substituting them into the response function,we can acquire the predicted interval.Finally,an iterative process is developed to improve the accuracy and stability of the proposed method.Several numerical examples are investigated to demonstrate the effectiveness of the proposed method.Simulation results indicate that the presented IIAMKH can obtain more accurate results with fewer samples.
基金supported by the National Natural Science Foundation of China(Grant No.11602012)the 111 Project(Grant No.B07009)+1 种基金the Defense Industrial Technology Development Program(Grant No.JCKY2016601B001)and the China Postdoctoral Science Foundation(Grant No.2016M591038)
文摘A Newton iteration-based interval uncertainty analysis method(NI-IUAM) is proposed to analyze the propagating effect of interval uncertainty in multidisciplinary systems. NI-IUAM decomposes one multidisciplinary system into single disciplines and utilizes a Newton iteration equation to obtain the upper and lower bounds of coupled state variables at each iterative step.NI-IUAM only needs to determine the bounds of uncertain parameters and does not require specific distribution formats. In this way, NI-IUAM may greatly reduce the necessity for raw data. In addition, NI-IUAM can accelerate the convergence process as a result of the super-linear convergence of Newton iteration. The applicability of the proposed method is discussed, in particular that solutions obtained in each discipline must be compatible in multidisciplinary systems. The validity and efficiency of NI-IUAM is demonstrated by both numerical and engineering examples.