A novel kind of optical fiber instrument for two channel measurement of temperature and displacement was developed. Four channel quartz fiber optics were employed to measure two channel signals of temperature and disp...A novel kind of optical fiber instrument for two channel measurement of temperature and displacement was developed. Four channel quartz fiber optics were employed to measure two channel signals of temperature and displacement simultaneously, and the operating efficiency of this instrument was greatly improved.展开更多
The existing surface roughness standards comprise only two dimensions. However, the real roughness of the surface is 3D (three-dimensional). Roughness parameters of the 3D surface are also important in analyzing the...The existing surface roughness standards comprise only two dimensions. However, the real roughness of the surface is 3D (three-dimensional). Roughness parameters of the 3D surface are also important in analyzing the mechanics of contact surfaces. Problems of mechanics of contact surfaces are related to accuracy of 3D surface roughness characteristic. One of the most important factors for 3D characteristics determination is the number of data points per x and y axes. With number of data points we understand its number in cut-off length. Number of data points have substantial influence on the accuracy of measurement results, measuring time and size of output data file (especially along the y-axis direction, where number of data points are number of parallel profiles). Number of data points must be optimal. Small number of data points lead to incorrect results and increase distribution amplitude, but too large number of data points do not enlarge range of fundamental information, but substantially increase measuring time. Therefore, we must find optimal number of data points per each surface processing method.展开更多
The shear behavior of rock joints is important in solving practical problems of rock mechanics. Three group rock joints with different morphologies are made by cement mortar material and a series of CNL(constant norma...The shear behavior of rock joints is important in solving practical problems of rock mechanics. Three group rock joints with different morphologies are made by cement mortar material and a series of CNL(constant normal loading) shear tests are performed. The influences of the applied normal stress and joint morphology to its shear strength are analyzed. According to the experimental results, the peak dilatancy angle of rock joint decreases with increasing normal stress, but increases with increasing roughness. The shear strength increases with the increasing normal stress and the roughness of rock joint. It is observed that the modes of failure of asperities are tensile, pure shear, or a combination of both. It is suggested that the three-dimensional roughness parameters and the tensile strength are the appropriate parameter for describing the shear strength criterion. A new peak shear criterion is proposed which can be used to predict peak shear strength of rock joints. All the used parameters can be easily obtained by performing tests.展开更多
Actual slope stability problems have three-dimensional(3D) characteristics and the soils of slopes have curved failure envelopes. This incorporates a power-law nonlinear failure criterion into the kinematic approach o...Actual slope stability problems have three-dimensional(3D) characteristics and the soils of slopes have curved failure envelopes. This incorporates a power-law nonlinear failure criterion into the kinematic approach of limit analysis to conduct the evaluation of the stability of 3D slopes. A tangential technique is adopted to simplify the nonlinear failure criterion in the form of equivalent Mohr-Coulomb strength parameters. A class of 3D admissible rotational failure mechanisms is selected for soil slopes including three types of failure mechanisms: face failure, base failure, and toe failure. The upper-bound solutions and corresponding critical slip surfaces can be obtained by an efficient optimization method. The results indicate that the nonlinear parameters have significant influences on the assessment of slope stability, especially on the type of failure mechanism. The effects of nonlinear parameters appear to be pronounced for gentle slopes constrained to a narrow width. Compared with the solutions derived from plane-strain analysis, the 3D solutions are more sensitive to the values of nonlinear parameters.展开更多
A novel method for the static analysis of structures with interval parameters under uncertain loads is proposed, which overcomes the inherent conservatism introduced by the conventional interval analysis due to ignori...A novel method for the static analysis of structures with interval parameters under uncertain loads is proposed, which overcomes the inherent conservatism introduced by the conventional interval analysis due to ignoring the dependency phenomenon. Instead of capturing the extremum of the structural static responses in the entire space spanned by uncertain parameters, their lower and upper bounds are calculated at the minimal and maximal point vectors obtained dimension by dimension with respect to uncertain parameters based on the Legend orthogonal polynomial approximation, overcoming the potential engineering insignificance caused by the optimization strategy. After performing its theoretical analysis, both the accuracy and applicability of the proposed method are verified.展开更多
This paper presents the first report of the successful ball-milling exfoliation of graphitic filaments (GANF~ carbon nanofibres) into single layer graphene. The addition of small amounts of solvent during the millin...This paper presents the first report of the successful ball-milling exfoliation of graphitic filaments (GANF~ carbon nanofibres) into single layer graphene. The addition of small amounts of solvent during the milling process makes it possible to enhance the intercalation of the exfoliating agent (melamine) between the graphene layers, thus promoting exceptional exfoliation. Advantage has also been taken of the fact that the Hansen solubility parameters of graphene are different from those of carbon fibres, which allows single and few-layer graphene to be suspended in a particular solvent, thus discriminating them from poorly exfoliated carbon nanofibres.展开更多
文摘A novel kind of optical fiber instrument for two channel measurement of temperature and displacement was developed. Four channel quartz fiber optics were employed to measure two channel signals of temperature and displacement simultaneously, and the operating efficiency of this instrument was greatly improved.
文摘The existing surface roughness standards comprise only two dimensions. However, the real roughness of the surface is 3D (three-dimensional). Roughness parameters of the 3D surface are also important in analyzing the mechanics of contact surfaces. Problems of mechanics of contact surfaces are related to accuracy of 3D surface roughness characteristic. One of the most important factors for 3D characteristics determination is the number of data points per x and y axes. With number of data points we understand its number in cut-off length. Number of data points have substantial influence on the accuracy of measurement results, measuring time and size of output data file (especially along the y-axis direction, where number of data points are number of parallel profiles). Number of data points must be optimal. Small number of data points lead to incorrect results and increase distribution amplitude, but too large number of data points do not enlarge range of fundamental information, but substantially increase measuring time. Therefore, we must find optimal number of data points per each surface processing method.
基金Project(41130742)supported by the Key Program of National Natural Science Foundation of ChinaProject(2014CB046904)supportedby the National Basic Research Program of China+1 种基金Project(2011CDA119)supported by Natural Science Foundation of Hubei Province,ChinaProject(40972178)supported by the General Program of National Natural Science Foundation of China
文摘The shear behavior of rock joints is important in solving practical problems of rock mechanics. Three group rock joints with different morphologies are made by cement mortar material and a series of CNL(constant normal loading) shear tests are performed. The influences of the applied normal stress and joint morphology to its shear strength are analyzed. According to the experimental results, the peak dilatancy angle of rock joint decreases with increasing normal stress, but increases with increasing roughness. The shear strength increases with the increasing normal stress and the roughness of rock joint. It is observed that the modes of failure of asperities are tensile, pure shear, or a combination of both. It is suggested that the three-dimensional roughness parameters and the tensile strength are the appropriate parameter for describing the shear strength criterion. A new peak shear criterion is proposed which can be used to predict peak shear strength of rock joints. All the used parameters can be easily obtained by performing tests.
基金Project(201501035-03)supported by the Public Service Sector R&D Project of Ministry of Water Resource of ChinaProject(2015CB057901)supported by Basic Research Program of China+4 种基金Projects(51278382,51479050,51508160)supported by the National Natural Science Foundation of ChinaProject(B13024)supported by the 111 ProjectProjects(2014B06814,B15020060,2014B33414)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(YK913004)supported by the Open Foundation of Key Laboratory of Failure Mechanism and Safety Control Techniques of Earth-rock Dam of the Ministry of Water Resources,ChinaProject(KYZZ_0143)supported by the Graduate Education Innovation Project of Jiangsu Province of China
文摘Actual slope stability problems have three-dimensional(3D) characteristics and the soils of slopes have curved failure envelopes. This incorporates a power-law nonlinear failure criterion into the kinematic approach of limit analysis to conduct the evaluation of the stability of 3D slopes. A tangential technique is adopted to simplify the nonlinear failure criterion in the form of equivalent Mohr-Coulomb strength parameters. A class of 3D admissible rotational failure mechanisms is selected for soil slopes including three types of failure mechanisms: face failure, base failure, and toe failure. The upper-bound solutions and corresponding critical slip surfaces can be obtained by an efficient optimization method. The results indicate that the nonlinear parameters have significant influences on the assessment of slope stability, especially on the type of failure mechanism. The effects of nonlinear parameters appear to be pronounced for gentle slopes constrained to a narrow width. Compared with the solutions derived from plane-strain analysis, the 3D solutions are more sensitive to the values of nonlinear parameters.
基金supported by the Defense Industrial Technology Development Program(Grant Nos.A2120110001 and B2120110011)‘111’ Project(Grant No.B07009)the National Natural Science Foundation of China(Grant Nos.90816024 and 10876100)
文摘A novel method for the static analysis of structures with interval parameters under uncertain loads is proposed, which overcomes the inherent conservatism introduced by the conventional interval analysis due to ignoring the dependency phenomenon. Instead of capturing the extremum of the structural static responses in the entire space spanned by uncertain parameters, their lower and upper bounds are calculated at the minimal and maximal point vectors obtained dimension by dimension with respect to uncertain parameters based on the Legend orthogonal polynomial approximation, overcoming the potential engineering insignificance caused by the optimization strategy. After performing its theoretical analysis, both the accuracy and applicability of the proposed method are verified.
文摘This paper presents the first report of the successful ball-milling exfoliation of graphitic filaments (GANF~ carbon nanofibres) into single layer graphene. The addition of small amounts of solvent during the milling process makes it possible to enhance the intercalation of the exfoliating agent (melamine) between the graphene layers, thus promoting exceptional exfoliation. Advantage has also been taken of the fact that the Hansen solubility parameters of graphene are different from those of carbon fibres, which allows single and few-layer graphene to be suspended in a particular solvent, thus discriminating them from poorly exfoliated carbon nanofibres.