尽管Johnson提出的PCNN模型具有强大的图像处理功能,以时间序列进行特征提取时具有旋转、尺度、平移、扭曲不变性,可实践中发现依然存在着不足,特别对图像亮度、对比度比较敏感。添加了误差反向传播(Error Back Propagation,EBP)学习准...尽管Johnson提出的PCNN模型具有强大的图像处理功能,以时间序列进行特征提取时具有旋转、尺度、平移、扭曲不变性,可实践中发现依然存在着不足,特别对图像亮度、对比度比较敏感。添加了误差反向传播(Error Back Propagation,EBP)学习准则的自适应脉冲耦合神经网络模型能自适应设定模型参数,是脉冲耦合神经网络模型研究的主要内容。特别地,应用这种自适应模型进行特征提取时,能弥补原来PCNN模型对亮度、对比度敏感的缺陷,而且具有一定的泛化能力,有效克服了亮度、对比度对图像识别精度的影响。展开更多
文摘尽管Johnson提出的PCNN模型具有强大的图像处理功能,以时间序列进行特征提取时具有旋转、尺度、平移、扭曲不变性,可实践中发现依然存在着不足,特别对图像亮度、对比度比较敏感。添加了误差反向传播(Error Back Propagation,EBP)学习准则的自适应脉冲耦合神经网络模型能自适应设定模型参数,是脉冲耦合神经网络模型研究的主要内容。特别地,应用这种自适应模型进行特征提取时,能弥补原来PCNN模型对亮度、对比度敏感的缺陷,而且具有一定的泛化能力,有效克服了亮度、对比度对图像识别精度的影响。