In light of the high nonlinearity of LuGre friction model, a novel method based on ant colony algorithm(ACA) for identifying the friction parameters of flight simulation servo system is proposed. ACA is a parallelized...In light of the high nonlinearity of LuGre friction model, a novel method based on ant colony algorithm(ACA) for identifying the friction parameters of flight simulation servo system is proposed. ACA is a parallelized bionic optimization algorithm inspired from the behavior of real ants, and a kind of positive feedback mechanism is adopted in ACA. On the basis of brief introduction of LuGre friction model, a method for identifying the static LuGre friction parameters and the dynamic LuGre friction parameters using ACA is derived. Finally, this new friction parameter identification scheme is applied to a electric-driven flight simulation servo system with high precision. Simulation and application results verify the feasibility and the effectiveness of the scheme. It provides a new way to identify the friction parameters of LuGre model.展开更多
The material of nickel aluminum bronze (NAB) presents superior properties such as high strength, excellent wear resistance and stress corrosion resistance and is extensively used for marine propellers. In order to est...The material of nickel aluminum bronze (NAB) presents superior properties such as high strength, excellent wear resistance and stress corrosion resistance and is extensively used for marine propellers. In order to establish the constitutive relation of NAB under high strain rate condition, a new methodology was proposed to accurately identify the constitutive parameters of Johnson?Cook model in machining, combining SHPB tests, predictive cutting force model and orthogonal cutting experiment. Firstly, SHPB tests were carried out to obtain the true stress?strain curves at various temperatures and strain rates. Then, an objective function of the predictive and experimental flow stresses was set up, which put the identified parameters of SHPB tests as the initial value, and utilized the PSO algorithm to identify the constitutive parameters of NAB in machining. Finally, the identified parameters were verified to be sufficiently accurate by comparing the values of cutting forces calculated from the predictive model and FEM simulation.展开更多
Array configuration of multiple-input multiple-output (MIMO) radar with non-uniform linear array (NLA) is proposed. Unlike a standard phased-array radar where NLA is used to generate thinner beam patterns, in MIMO...Array configuration of multiple-input multiple-output (MIMO) radar with non-uniform linear array (NLA) is proposed. Unlike a standard phased-array radar where NLA is used to generate thinner beam patterns, in MIMO radar the property of NLA is exploited to get more distinct virtual array elements so as to improve pa- rameter identifiability, which means the maximum number of targets that can be uniquely identified by the radar. A class of NLA called minimum redundancy linear array (MRLA) is employed and a new method to construct large MRLAs is descrihed. The numerical results verify that compared to uniform linear array (ULA) MIMO radars, NLA MIMO radars can retain the same parameter identifiability with fewer physical antennas and achieve larger aperture length and lower Cramer-Rao bound with the same number of the physical antennas.展开更多
This paper considers the necessary condition of the parameter identification problem dudt=(A+B(q))u u(0)=x x∈X with the cost functional J(q)≡12∫ T 0‖Cu(t;q)-y(t)‖ 2 H d t It is proved that the optimal...This paper considers the necessary condition of the parameter identification problem dudt=(A+B(q))u u(0)=x x∈X with the cost functional J(q)≡12∫ T 0‖Cu(t;q)-y(t)‖ 2 H d t It is proved that the optimal estimate q 0 is determined by the optimal system which consists of the sate equation,the adjoint equation and the optimal condition.展开更多
In order to better identify the parameters of the fractional-order system,a modified particle swarm optimization(MPSO)algorithm based on an improved Tent mapping is proposed.The MPSO algorithm is validated with eight ...In order to better identify the parameters of the fractional-order system,a modified particle swarm optimization(MPSO)algorithm based on an improved Tent mapping is proposed.The MPSO algorithm is validated with eight classical test functions,and compared with the POS algorithm with adaptive time varying accelerators(ACPSO),the genetic algorithm(GA),a d the improved PSO algorithm with passive congregation(IPSO).Based on the systems with known model structures a d unknown model structures,the proposed algorithm is adopted to identify two typical fractional-order models.The results of parameter identification show that the application of average value of position information is beneficial to making f 11 use of the information exchange among individuals and speeds up the global searching speed.By introducing the uniformity and ergodicity of Tent mapping,the MPSO avoids the extreme v^ue of position information,so as not to fall into the local optimal value.In brief the MPSOalgorithm is an effective a d useful method with a fast convergence rate and high accuracy.展开更多
The accuracy of nucleation parameter is a critical factor in the simulation of microstructural evolution during dynamic recrystallization(DRX).Based on the flow stress curve under hot deformation conditions,a new appr...The accuracy of nucleation parameter is a critical factor in the simulation of microstructural evolution during dynamic recrystallization(DRX).Based on the flow stress curve under hot deformation conditions,a new approach is proposed to identify the nucleation parameter during DRX.In this approach,a cellular automaton(CA) model is applied to quantitatively simulate the microstructural evolution and flow stress during hot deformation;and adaptive response surface method(ARSM) is applied as optimization model to provide input parameters to CA model and evaluate the outputs of the latter.By taking an oxygen-free high-conductivity(OFHC) copper as an example,the good agreement between the simulation results and the experimental observations demonstrates the availability of the proposed method.展开更多
A new modified LuGre friction model is presented for electromagnetic valve actuator system.The modification to the traditional LuGre friction model is made by adding an acceleration-dependent part and a nonlinear cont...A new modified LuGre friction model is presented for electromagnetic valve actuator system.The modification to the traditional LuGre friction model is made by adding an acceleration-dependent part and a nonlinear continuous switch function.The proposed new friction model solves the implementation problems with the traditional LuGre model at high speeds.An improved artificial fish swarm algorithm(IAFSA)method which combines the chaotic search and Gauss mutation operator into traditional artificial fish swarm algorithm is used to identify the parameters in the proposed modified LuGre friction model.The steady state response experiments and dynamic friction experiments are implemented to validate the effectiveness of IAFSA algorithm.The comparisons between the measured dynamic friction forces and the ones simulated with the established mathematic friction model at different frequencies and magnitudes demonstrate that the proposed modified LuGre friction model can give accurate simulation about the dynamic friction characteristics existing in the electromagnetic valve actuator system.The presented modelling and parameter identification methods are applicable for many other high-speed mechanical systems with friction.展开更多
To offset the defect of the traditional state of charge(SOC)estimation algorithm of lithium battery for electric vehicle and considering the complex working conditions of lithium batteries,an online SOC estimation alg...To offset the defect of the traditional state of charge(SOC)estimation algorithm of lithium battery for electric vehicle and considering the complex working conditions of lithium batteries,an online SOC estimation algorithm is proposed by combining the online parameter identification method and the modified covariance extended Kalman filter(MVEKF)algorithm.Based on the parameters identified on line with the multiple forgetting factors recursive least squares methods,the newly-established algorithm recalculates the covariance in the iterative process with the modified estimation and updates the process gain which is used for the next state estimation to decrease errors of the filter.Experiments including constant pulse discharging and the dynamic stress test(DST)demonstrate that compared with the EKF algorithm,the MVEKF algorithm produces fewer estimation errors and can reduce the errors to 5%at most under the complex charging and discharging conditions of batteries.In the charging process under the DST condition,the EKF produces a larger deviation and lacks stability,while the MVEKF algorithm can estimate SOC stably and has a strong robustness.Therefore,the established MVEKF algorithm is suitable for complex and changeable working conditions of batteries for electric vehicles.展开更多
The bridge piles located in high-steep slopes not only endure the loads from superstructure, but also the residual sliding force as well as the resistance from the slope. By introducing the Winkler foundation theory, ...The bridge piles located in high-steep slopes not only endure the loads from superstructure, but also the residual sliding force as well as the resistance from the slope. By introducing the Winkler foundation theory, the mechanical model of piles-soils-slopes system was established, and the equilibrium differential equations of pile were derived. Moreover, an analytic solution for identifying the model parameters was provided by means of power series method. A project with field measurement was compared with the proposed method. It is indicated that the lateral loads have great influences on the pile, the steep slope effect is indispensable, and reasonable diameter of the pile could enhance the bending ability. The internal force and displacements of pile are largely based upon the horizontal loads applied on pile, especially in upper part.展开更多
An estimation approach using least squares method was presented for identificationof model parameters of pressure control in shield tunneling.The state equation ofthe pressure control system for shield tunneling was a...An estimation approach using least squares method was presented for identificationof model parameters of pressure control in shield tunneling.The state equation ofthe pressure control system for shield tunneling was analytically derived based on themass equilibrium principle that the entry mass of the pressure chamber from cutting headwas equal to excluding mass from the screw conveyor.The randomly observed noise wasnumerically simulated and mixed to simulated observation values of system responses.The numerical simulation shows that the state equation of the pressure control system forshield tunneling is reasonable and the proposed estimation approach is effective even ifthe random observation noise exists.The robustness of the controlling procedure is validatedby numerical simulation results.展开更多
We introduce the artificial fish swarm algorithm for heading motion model identification and control parameter optimization problems for the“Ocean Rambler”unmanned wave glider(UWG).First,under certain assumptions,th...We introduce the artificial fish swarm algorithm for heading motion model identification and control parameter optimization problems for the“Ocean Rambler”unmanned wave glider(UWG).First,under certain assumptions,the rigid-flexible multi-body system of the UWG was simplified as a rigid system composed of“thruster+float body”,based on which a planar motion model of the UWG was established.Second,we obtained the model parameters using an empirical method combined with parameter identification,which means that some parameters were estimated by the empirical method.In view of the specificity and importance of the heading control,heading model parameters were identified through the artificial fish swarm algorithm based on tank test data,so that we could take full advantage of the limited trial data to factually describe the dynamic characteristics of the system.Based on the established heading motion model,parameters of the heading S-surface controller were optimized using the artificial fish swarm algorithm.Heading motion comparison and maritime control experiments of the“Ocean Rambler”UWG were completed.Tank test results show high precision of heading motion prediction including heading angle and yawing angular velocity.The UWG shows good control performance in tank tests and sea trials.The efficiency of the proposed method is verified.展开更多
The parallel processing based on the free running model test was adopted to predict the interaction force coefficients (flow straightening coefficient and wake fraction) of ship maneuvering. And the multipopulation ...The parallel processing based on the free running model test was adopted to predict the interaction force coefficients (flow straightening coefficient and wake fraction) of ship maneuvering. And the multipopulation genetic algorithm (MPGA) based on real coding that can contemporarily process the data of free running model and simulation of ship maneuvering was applied to solve the problem. Accordingly the optimal individual was obtained using the method of genetic algorithm. The parallel processing of multiopulation solved the prematurity in the identification for single population, meanwhile, the parallel processing of the data of ship maneuvering (turning motion and zigzag motion) is an attempt to solve the coefficient drift problem. In order to validate the method, the interaction force coefficients were verified by the procedure and these coefficients measured were compared with those ones identified. The maximum error is less than 5%, and the identification is an effective method.展开更多
A new experimental apparatus was set up to investigate the actual fi-iction characteristics on the basis of speed control of the serve system.A modified friction model was proposed due to real time varying deformation...A new experimental apparatus was set up to investigate the actual fi-iction characteristics on the basis of speed control of the serve system.A modified friction model was proposed due to real time varying deformation resistance.The approach to identify the parameters of comprehensive friction behaviors based on the modified model was proposed and applied to the forging press.The impacts on parameters which the external load had were also investigated.The results show that friction force decreases with velocity in the low velocity regime whereas the friction force increases with the velocity in the high velocity regime under no external load.It is also shown that the Coulomb friction force,the maximum static friction force and the vicious friction coefficient change linearly with the external load taking the velocity at which the magnitude of the steady state friction force becomes minimum as the critical velocity.展开更多
Accurate parameter identification is essential when designing controllers for inertially stabilized platforms (lSPs). But traditional identification methods suffer from observation measurement noise and operating re...Accurate parameter identification is essential when designing controllers for inertially stabilized platforms (lSPs). But traditional identification methods suffer from observation measurement noise and operating restrictions of ISPs. To address this issue, a novel identification method based on current command design and multilevel coordinate search (MCS) algorithm without any higher order measurement differentiations was proposed. The designed current commands were adopted to obtain parameter decoupled models with the platform operating under allowable conditions. MCS algorithm was employed to estimate the parameters based on parameter decoupled models. A comparison experiment between the proposed method and non-linear least square method was carried out and most of the relative errors of identified parameters obtained by the proposed method were below 10%. Simulation and experiment based on identified parameters were conducted. A velocity control structure was also developed with disturbance observer (DOB) for application in disturbance compensation control system of an ISR Experimental results show that the control scheme based on the identified parameters with DOB has the best disturbance rejection performance. It reduces the peak to peak value (PPV) of velocity error integral to 0.8 mrad which is much smaller than the value (10 mrad) obtained by the single velocity controller without DOB. Compared with the control scheme based on sweep model with DOB compensation, the proposed control scheme improves the PPV of velocity error integral by 1.625 times.展开更多
Xigeda formation is a type of hundredmeter-thick lacustrine sediments of being prone to triggering landslides along the trunk channel and tributaries of the upper Yangtze River in China. The Yonglang landslide located...Xigeda formation is a type of hundredmeter-thick lacustrine sediments of being prone to triggering landslides along the trunk channel and tributaries of the upper Yangtze River in China. The Yonglang landslide located near Yonglang Town of Dechang County in Sichuan Province of China, which was a typical Xigeda formation landslide, was stabilized by anti-slide piles. Loading tests on a loading-test pile were conducted to measure the displacements and moments. The uncertainty of the tested geomechanical parameters of the Yonglang landslide over certain ranges would be problematic during the evaluation of the landslide. Thus, uniform design was introduced in the experimental design,and by which, numerical analyses of the loading-test pile were performed using Fast Lagrangian Analysis of Continua(FLAC3D) to acquire a database of the geomechanical parameters of the Yonglang landslide and the corresponding displacements of the loadingtest pile. A three-layer back-propagation neural network was established and trained with the database, and then tested and verified for its accuracy and reliability in numerical simulations. Displacement back analysis was conducted by substituting the displacements of the loading-test pile to the well-trained three-layer back-propagation neural network so as to identify the geomechanical parameters of the Yonglang landslide. The neuralnetwork-based displacement back analysis method with the proposed methodology is verified to be accurate and reliable for the identification of the uncertain geomechanical parameters of landslides.展开更多
An improved 22--line method of parameters identification for geometric errors of NC machine tools is discussed. All models are verified by a series of experiments on XH714 machining center. This method is available to...An improved 22--line method of parameters identification for geometric errors of NC machine tools is discussed. All models are verified by a series of experiments on XH714 machining center. This method is available to identify geometric error parameters for three-coordinate equipment such as NC machining center and CMM.展开更多
The dynamic parameter identification of the robot is the basis for the design of the controller based on the dynamic model.Currently,the primary method for solving angular velocity and angular acceleration is to filte...The dynamic parameter identification of the robot is the basis for the design of the controller based on the dynamic model.Currently,the primary method for solving angular velocity and angular acceleration is to filter and smooth the position sequence and then form a differential signal.However,if the noise and the original signal overlap in the frequency domain,filtering the noise will also filter out the valuable information in the frequency band.This paper proposes an excitation trajectory based on Logistic function,which fully uses the information in the original signal and can accurately solve the angular velocity and angular acceleration without filtering and smoothing the position sequence.The joint angle of the excitation trajectory is mapped to the joint angular velocity and angular acceleration one by one so that the joint angular velocity and joint angular acceleration can be obtained directly according to the position.The genetic algorithm is used to optimize the excitation trajectory parameters to minimize the observation matrix’s condition number and further improve the identification accuracy.By using the strategy of iterative identification,the dynamic parameters identified in each iteration are substituted into the robot controller according to the previous position sequence until the tracking trajectory approaches the desired trajectory,and the actual joint angular velocity and angular acceleration converge to the expected value.The simulation results show that using the step-by-step strategy,the joint angular velocity and joint angular acceleration of the tracking trajectory quickly converge to the expected value,and the identification error of inertia parameters is less than 0.01 in three iterations.With the increase of the number of iterations,the identification error of inertial parameters can be further reduced.展开更多
A model to describe the hysteresis damping characteristic of rubber material was presented.It consists of a parallel spring and damper,whose coefficients change with the vibration amplitude and frequency.In order to a...A model to describe the hysteresis damping characteristic of rubber material was presented.It consists of a parallel spring and damper,whose coefficients change with the vibration amplitude and frequency.In order to acquire these relations,force decomposition was carried out according to some sine vibration measurement data of nonlinear forces changing with the deformation of the rubber material.The nonlinear force is decomposed into a spring force and a damper force,which are represented by the amplitude-and frequency-dependent spring and damper coefficients,respectively.Repeating this step for different measurements gives different coefficients corresponding to different amplitudes and frequencies.Then,the application of a parameter identification method provides the requested approximation functions over amplitude and frequency.Using those formulae,as an example,the dynamic characteristic of a hollow shaft system supported by rubber rings was analyzed and the acceleration response curve in the centroid position was calculated.Comparisons with the sine vibration experiments of the real system show a maximal inaccuracy of 8.5%.Application of this model and procedure can simplify the modeling and analysis of mechanical systems including rubber materials.展开更多
The aim of the present work is to realize an identification algorithm especially devoted to UAS (unmanned aerial systems). Because UAS employ low cost sensor, very high measurement noise has to be taken into account...The aim of the present work is to realize an identification algorithm especially devoted to UAS (unmanned aerial systems). Because UAS employ low cost sensor, very high measurement noise has to be taken into account. Therefore, due to both modelling errors and atmospheric turbulence, noticeable system noise has also to be considered. To cope with both the measurement and system noise, the identification problem addressed in this work is solved by using the FEM (filter error method) approach. A nonlinear mathematical model of the subject aircraft longitudinal dynamics has been tuned up through semi-empirical methods, numerical simulations and ground tests. To take into account model nonlinearities, an EKF (extended Kalman filter) has been implemented to propagate the state. A procedure has been tuned up to determine either aircraft parameters or the process noise. It is noticeable that, because the system noise is treated as unknown parameter, it is possible to identify system affected by noticeable modelling errors. Therefore, the obtained values of process noise covariance matrix can be used to highlight system failure. The obtained results show that the algorithm requires a short computation time to determine aircraft parameter with noticeable precision by using low computation power. The present procedure could be employed to determine the system noise for various mechanical systems, since it is particularly devoted to systems which present dynamics that are difficult to model. Finally, the tuned up off-line EKF should be employed to on-line estimation of either state or unmeasurable inputs like atmospheric turbulence.展开更多
文摘In light of the high nonlinearity of LuGre friction model, a novel method based on ant colony algorithm(ACA) for identifying the friction parameters of flight simulation servo system is proposed. ACA is a parallelized bionic optimization algorithm inspired from the behavior of real ants, and a kind of positive feedback mechanism is adopted in ACA. On the basis of brief introduction of LuGre friction model, a method for identifying the static LuGre friction parameters and the dynamic LuGre friction parameters using ACA is derived. Finally, this new friction parameter identification scheme is applied to a electric-driven flight simulation servo system with high precision. Simulation and application results verify the feasibility and the effectiveness of the scheme. It provides a new way to identify the friction parameters of LuGre model.
基金Project(2014CB046704)supported by the National Basic Research Program of ChinaProject(2014BAB13B01)supported by the National Science and Technology Pillar Program of China
文摘The material of nickel aluminum bronze (NAB) presents superior properties such as high strength, excellent wear resistance and stress corrosion resistance and is extensively used for marine propellers. In order to establish the constitutive relation of NAB under high strain rate condition, a new methodology was proposed to accurately identify the constitutive parameters of Johnson?Cook model in machining, combining SHPB tests, predictive cutting force model and orthogonal cutting experiment. Firstly, SHPB tests were carried out to obtain the true stress?strain curves at various temperatures and strain rates. Then, an objective function of the predictive and experimental flow stresses was set up, which put the identified parameters of SHPB tests as the initial value, and utilized the PSO algorithm to identify the constitutive parameters of NAB in machining. Finally, the identified parameters were verified to be sufficiently accurate by comparing the values of cutting forces calculated from the predictive model and FEM simulation.
基金Supported by the Aeronautic Science Foundation of China(2008ZC52026)the Innovation Foundation of Nanjing University of Aeronautics and Astronautics~~
文摘Array configuration of multiple-input multiple-output (MIMO) radar with non-uniform linear array (NLA) is proposed. Unlike a standard phased-array radar where NLA is used to generate thinner beam patterns, in MIMO radar the property of NLA is exploited to get more distinct virtual array elements so as to improve pa- rameter identifiability, which means the maximum number of targets that can be uniquely identified by the radar. A class of NLA called minimum redundancy linear array (MRLA) is employed and a new method to construct large MRLAs is descrihed. The numerical results verify that compared to uniform linear array (ULA) MIMO radars, NLA MIMO radars can retain the same parameter identifiability with fewer physical antennas and achieve larger aperture length and lower Cramer-Rao bound with the same number of the physical antennas.
基金Supported by the National Natural Science Foundation of China(No.697740 1 2 )
文摘This paper considers the necessary condition of the parameter identification problem dudt=(A+B(q))u u(0)=x x∈X with the cost functional J(q)≡12∫ T 0‖Cu(t;q)-y(t)‖ 2 H d t It is proved that the optimal estimate q 0 is determined by the optimal system which consists of the sate equation,the adjoint equation and the optimal condition.
基金The National Natural Science Foundation of China(No.61374153,61473138,61374133)the Natural Science Foundation of Jiangsu Province(No.BK20151130)+1 种基金Six Talent Peaks Project in Jiangsu Province(No.2015-DZXX-011)China Scholarship Council Fund(No.201606845005)
文摘In order to better identify the parameters of the fractional-order system,a modified particle swarm optimization(MPSO)algorithm based on an improved Tent mapping is proposed.The MPSO algorithm is validated with eight classical test functions,and compared with the POS algorithm with adaptive time varying accelerators(ACPSO),the genetic algorithm(GA),a d the improved PSO algorithm with passive congregation(IPSO).Based on the systems with known model structures a d unknown model structures,the proposed algorithm is adopted to identify two typical fractional-order models.The results of parameter identification show that the application of average value of position information is beneficial to making f 11 use of the information exchange among individuals and speeds up the global searching speed.By introducing the uniformity and ergodicity of Tent mapping,the MPSO avoids the extreme v^ue of position information,so as not to fall into the local optimal value.In brief the MPSOalgorithm is an effective a d useful method with a fast convergence rate and high accuracy.
基金Project(2006CB705401) supported by the National Basic Research Program of China
文摘The accuracy of nucleation parameter is a critical factor in the simulation of microstructural evolution during dynamic recrystallization(DRX).Based on the flow stress curve under hot deformation conditions,a new approach is proposed to identify the nucleation parameter during DRX.In this approach,a cellular automaton(CA) model is applied to quantitatively simulate the microstructural evolution and flow stress during hot deformation;and adaptive response surface method(ARSM) is applied as optimization model to provide input parameters to CA model and evaluate the outputs of the latter.By taking an oxygen-free high-conductivity(OFHC) copper as an example,the good agreement between the simulation results and the experimental observations demonstrates the availability of the proposed method.
基金Project(2015BAG06B00)supported by the National Key Technology Research from Development Program of the Ministry of Science and Technology of China
文摘A new modified LuGre friction model is presented for electromagnetic valve actuator system.The modification to the traditional LuGre friction model is made by adding an acceleration-dependent part and a nonlinear continuous switch function.The proposed new friction model solves the implementation problems with the traditional LuGre model at high speeds.An improved artificial fish swarm algorithm(IAFSA)method which combines the chaotic search and Gauss mutation operator into traditional artificial fish swarm algorithm is used to identify the parameters in the proposed modified LuGre friction model.The steady state response experiments and dynamic friction experiments are implemented to validate the effectiveness of IAFSA algorithm.The comparisons between the measured dynamic friction forces and the ones simulated with the established mathematic friction model at different frequencies and magnitudes demonstrate that the proposed modified LuGre friction model can give accurate simulation about the dynamic friction characteristics existing in the electromagnetic valve actuator system.The presented modelling and parameter identification methods are applicable for many other high-speed mechanical systems with friction.
基金The National Natural Science Foundation of China(No.51375086)。
文摘To offset the defect of the traditional state of charge(SOC)estimation algorithm of lithium battery for electric vehicle and considering the complex working conditions of lithium batteries,an online SOC estimation algorithm is proposed by combining the online parameter identification method and the modified covariance extended Kalman filter(MVEKF)algorithm.Based on the parameters identified on line with the multiple forgetting factors recursive least squares methods,the newly-established algorithm recalculates the covariance in the iterative process with the modified estimation and updates the process gain which is used for the next state estimation to decrease errors of the filter.Experiments including constant pulse discharging and the dynamic stress test(DST)demonstrate that compared with the EKF algorithm,the MVEKF algorithm produces fewer estimation errors and can reduce the errors to 5%at most under the complex charging and discharging conditions of batteries.In the charging process under the DST condition,the EKF produces a larger deviation and lacks stability,while the MVEKF algorithm can estimate SOC stably and has a strong robustness.Therefore,the established MVEKF algorithm is suitable for complex and changeable working conditions of batteries for electric vehicles.
基金Project(51408066)supported by the National Natural Science Foundation of China
文摘The bridge piles located in high-steep slopes not only endure the loads from superstructure, but also the residual sliding force as well as the resistance from the slope. By introducing the Winkler foundation theory, the mechanical model of piles-soils-slopes system was established, and the equilibrium differential equations of pile were derived. Moreover, an analytic solution for identifying the model parameters was provided by means of power series method. A project with field measurement was compared with the proposed method. It is indicated that the lateral loads have great influences on the pile, the steep slope effect is indispensable, and reasonable diameter of the pile could enhance the bending ability. The internal force and displacements of pile are largely based upon the horizontal loads applied on pile, especially in upper part.
基金Supported by the National Basic Research Program of China(2007CB714006)the National Natural Science Foundation of China(90815023)
文摘An estimation approach using least squares method was presented for identificationof model parameters of pressure control in shield tunneling.The state equation ofthe pressure control system for shield tunneling was analytically derived based on themass equilibrium principle that the entry mass of the pressure chamber from cutting headwas equal to excluding mass from the screw conveyor.The randomly observed noise wasnumerically simulated and mixed to simulated observation values of system responses.The numerical simulation shows that the state equation of the pressure control system forshield tunneling is reasonable and the proposed estimation approach is effective even ifthe random observation noise exists.The robustness of the controlling procedure is validatedby numerical simulation results.
基金Project(51779052)supported by the National Natural Science Foundation of ChinaProject(QC2016062)supported by the Natural Science Foundation of Heilongjiang Province,China+2 种基金Project(614221503091701)supported by the Research Fund from Science and Technology on Underwater Vehicle Laboratory,ChinaProject(LBH-Q17046)supported by the Heilongjiang Postdoctoral Funds for Scientific Research Initiation,ChinaProject(HEUCFP201741)supported by the Fundamental Research Funds for the Central Universities,China
文摘We introduce the artificial fish swarm algorithm for heading motion model identification and control parameter optimization problems for the“Ocean Rambler”unmanned wave glider(UWG).First,under certain assumptions,the rigid-flexible multi-body system of the UWG was simplified as a rigid system composed of“thruster+float body”,based on which a planar motion model of the UWG was established.Second,we obtained the model parameters using an empirical method combined with parameter identification,which means that some parameters were estimated by the empirical method.In view of the specificity and importance of the heading control,heading model parameters were identified through the artificial fish swarm algorithm based on tank test data,so that we could take full advantage of the limited trial data to factually describe the dynamic characteristics of the system.Based on the established heading motion model,parameters of the heading S-surface controller were optimized using the artificial fish swarm algorithm.Heading motion comparison and maritime control experiments of the“Ocean Rambler”UWG were completed.Tank test results show high precision of heading motion prediction including heading angle and yawing angular velocity.The UWG shows good control performance in tank tests and sea trials.The efficiency of the proposed method is verified.
基金the Knowledge-based Ship-designHyper-integrated Platform (KSHIP) of Ministry ofEducation, China
文摘The parallel processing based on the free running model test was adopted to predict the interaction force coefficients (flow straightening coefficient and wake fraction) of ship maneuvering. And the multipopulation genetic algorithm (MPGA) based on real coding that can contemporarily process the data of free running model and simulation of ship maneuvering was applied to solve the problem. Accordingly the optimal individual was obtained using the method of genetic algorithm. The parallel processing of multiopulation solved the prematurity in the identification for single population, meanwhile, the parallel processing of the data of ship maneuvering (turning motion and zigzag motion) is an attempt to solve the coefficient drift problem. In order to validate the method, the interaction force coefficients were verified by the procedure and these coefficients measured were compared with those ones identified. The maximum error is less than 5%, and the identification is an effective method.
基金Project(51005251)supported by the National Natural Science Foundation of ChinaProject(2011CB706802)supported by the National Basic Research Development Program of China(973 Program)
文摘A new experimental apparatus was set up to investigate the actual fi-iction characteristics on the basis of speed control of the serve system.A modified friction model was proposed due to real time varying deformation resistance.The approach to identify the parameters of comprehensive friction behaviors based on the modified model was proposed and applied to the forging press.The impacts on parameters which the external load had were also investigated.The results show that friction force decreases with velocity in the low velocity regime whereas the friction force increases with the velocity in the high velocity regime under no external load.It is also shown that the Coulomb friction force,the maximum static friction force and the vicious friction coefficient change linearly with the external load taking the velocity at which the magnitude of the steady state friction force becomes minimum as the critical velocity.
基金Project(50805144) supported by the National Natural Science Foundation of China
文摘Accurate parameter identification is essential when designing controllers for inertially stabilized platforms (lSPs). But traditional identification methods suffer from observation measurement noise and operating restrictions of ISPs. To address this issue, a novel identification method based on current command design and multilevel coordinate search (MCS) algorithm without any higher order measurement differentiations was proposed. The designed current commands were adopted to obtain parameter decoupled models with the platform operating under allowable conditions. MCS algorithm was employed to estimate the parameters based on parameter decoupled models. A comparison experiment between the proposed method and non-linear least square method was carried out and most of the relative errors of identified parameters obtained by the proposed method were below 10%. Simulation and experiment based on identified parameters were conducted. A velocity control structure was also developed with disturbance observer (DOB) for application in disturbance compensation control system of an ISR Experimental results show that the control scheme based on the identified parameters with DOB has the best disturbance rejection performance. It reduces the peak to peak value (PPV) of velocity error integral to 0.8 mrad which is much smaller than the value (10 mrad) obtained by the single velocity controller without DOB. Compared with the control scheme based on sweep model with DOB compensation, the proposed control scheme improves the PPV of velocity error integral by 1.625 times.
基金supported by the "Light of West China" Program of Chinese Academy of Sciences (Grant No.Y6R2250250)the National Basic Research Program of China (973 Program, Grant No.2013CB733201)+2 种基金the One-Hundred Talents Program of Chinese Academy of Sciences (LijunSu)the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No.QYZDB-SSW-DQC010)the Youth Fund of Institute of Mountain Hazards and Environment, Chinese Academy of Sciences (Grant No. Y6K2110110)
文摘Xigeda formation is a type of hundredmeter-thick lacustrine sediments of being prone to triggering landslides along the trunk channel and tributaries of the upper Yangtze River in China. The Yonglang landslide located near Yonglang Town of Dechang County in Sichuan Province of China, which was a typical Xigeda formation landslide, was stabilized by anti-slide piles. Loading tests on a loading-test pile were conducted to measure the displacements and moments. The uncertainty of the tested geomechanical parameters of the Yonglang landslide over certain ranges would be problematic during the evaluation of the landslide. Thus, uniform design was introduced in the experimental design,and by which, numerical analyses of the loading-test pile were performed using Fast Lagrangian Analysis of Continua(FLAC3D) to acquire a database of the geomechanical parameters of the Yonglang landslide and the corresponding displacements of the loadingtest pile. A three-layer back-propagation neural network was established and trained with the database, and then tested and verified for its accuracy and reliability in numerical simulations. Displacement back analysis was conducted by substituting the displacements of the loading-test pile to the well-trained three-layer back-propagation neural network so as to identify the geomechanical parameters of the Yonglang landslide. The neuralnetwork-based displacement back analysis method with the proposed methodology is verified to be accurate and reliable for the identification of the uncertain geomechanical parameters of landslides.
文摘An improved 22--line method of parameters identification for geometric errors of NC machine tools is discussed. All models are verified by a series of experiments on XH714 machining center. This method is available to identify geometric error parameters for three-coordinate equipment such as NC machining center and CMM.
基金supported by Aeronautical Science Foundation of China(No.201916052001)China National Key R&D Program(No.2018YFB1309203)Foundation of the Graduate Innovation Center,Nanjing University of Aeronautics and Astronautics(No.xcxjh20210501)。
文摘The dynamic parameter identification of the robot is the basis for the design of the controller based on the dynamic model.Currently,the primary method for solving angular velocity and angular acceleration is to filter and smooth the position sequence and then form a differential signal.However,if the noise and the original signal overlap in the frequency domain,filtering the noise will also filter out the valuable information in the frequency band.This paper proposes an excitation trajectory based on Logistic function,which fully uses the information in the original signal and can accurately solve the angular velocity and angular acceleration without filtering and smoothing the position sequence.The joint angle of the excitation trajectory is mapped to the joint angular velocity and angular acceleration one by one so that the joint angular velocity and joint angular acceleration can be obtained directly according to the position.The genetic algorithm is used to optimize the excitation trajectory parameters to minimize the observation matrix’s condition number and further improve the identification accuracy.By using the strategy of iterative identification,the dynamic parameters identified in each iteration are substituted into the robot controller according to the previous position sequence until the tracking trajectory approaches the desired trajectory,and the actual joint angular velocity and angular acceleration converge to the expected value.The simulation results show that using the step-by-step strategy,the joint angular velocity and joint angular acceleration of the tracking trajectory quickly converge to the expected value,and the identification error of inertia parameters is less than 0.01 in three iterations.With the increase of the number of iterations,the identification error of inertial parameters can be further reduced.
基金Project(50675042) supported by the National Natural Science Foundation of China
文摘A model to describe the hysteresis damping characteristic of rubber material was presented.It consists of a parallel spring and damper,whose coefficients change with the vibration amplitude and frequency.In order to acquire these relations,force decomposition was carried out according to some sine vibration measurement data of nonlinear forces changing with the deformation of the rubber material.The nonlinear force is decomposed into a spring force and a damper force,which are represented by the amplitude-and frequency-dependent spring and damper coefficients,respectively.Repeating this step for different measurements gives different coefficients corresponding to different amplitudes and frequencies.Then,the application of a parameter identification method provides the requested approximation functions over amplitude and frequency.Using those formulae,as an example,the dynamic characteristic of a hollow shaft system supported by rubber rings was analyzed and the acceleration response curve in the centroid position was calculated.Comparisons with the sine vibration experiments of the real system show a maximal inaccuracy of 8.5%.Application of this model and procedure can simplify the modeling and analysis of mechanical systems including rubber materials.
文摘The aim of the present work is to realize an identification algorithm especially devoted to UAS (unmanned aerial systems). Because UAS employ low cost sensor, very high measurement noise has to be taken into account. Therefore, due to both modelling errors and atmospheric turbulence, noticeable system noise has also to be considered. To cope with both the measurement and system noise, the identification problem addressed in this work is solved by using the FEM (filter error method) approach. A nonlinear mathematical model of the subject aircraft longitudinal dynamics has been tuned up through semi-empirical methods, numerical simulations and ground tests. To take into account model nonlinearities, an EKF (extended Kalman filter) has been implemented to propagate the state. A procedure has been tuned up to determine either aircraft parameters or the process noise. It is noticeable that, because the system noise is treated as unknown parameter, it is possible to identify system affected by noticeable modelling errors. Therefore, the obtained values of process noise covariance matrix can be used to highlight system failure. The obtained results show that the algorithm requires a short computation time to determine aircraft parameter with noticeable precision by using low computation power. The present procedure could be employed to determine the system noise for various mechanical systems, since it is particularly devoted to systems which present dynamics that are difficult to model. Finally, the tuned up off-line EKF should be employed to on-line estimation of either state or unmeasurable inputs like atmospheric turbulence.