期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
断层参数预测法预报隧道断层 被引量:17
1
作者 刘志刚 刘秀峰 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2003年第9期1547-1550,共4页
主要介绍所研制的利用断层影响带内的一种特殊节理预报隧道掌子面前方隐伏断层的产状、位置和规模的专利技术——断层参数预测法。概述了该项技术的基本原理,介绍了该项技术的精髓——Liu Zhigang公式,阐述了应用该项技术实施隧道断层... 主要介绍所研制的利用断层影响带内的一种特殊节理预报隧道掌子面前方隐伏断层的产状、位置和规模的专利技术——断层参数预测法。概述了该项技术的基本原理,介绍了该项技术的精髓——Liu Zhigang公式,阐述了应用该项技术实施隧道断层超前地质预报过程中的关键技术,并以实例论证了该项技术的应用效果。最后,通过多年实践,论述了该项技术的适用范围和在实现隧道超前地质预报中的作用。 展开更多
关键词 隧道工程 断层参数预测法 超前地质预报 煤层
下载PDF
一类小样本系统的非参数预测法
2
作者 金汉均 《湖北工学院学报》 1994年第4期20-23,共4页
本文提出了一种新的小样本条件下的预测方法.该方法不需事先确定预测模型f的形式,也不需估计未知参数θ,而将线性规划算法引入直接求具体预测值.实例研究显示该方法的有效性.
关键词 小样本系统 线性规划 预测 参数预测法
下载PDF
蒙古栎林分直径Weibull分布参数估计和预测方法比较 被引量:17
3
作者 国红 雷渊才 《林业科学》 EI CAS CSCD 北大核心 2016年第10期64-71,共8页
【目的】比较Weibull直径分布参数估计和预测的不同方法在蒙古栎次生林经营中的适用性和精确性,为更好开展蒙古栎林经营提供理论依据和技术参数。【方法】以吉林省157块蒙古栎纯林为研究对象,运用Kolmogorov-Smirnov(K-S)检验和误差... 【目的】比较Weibull直径分布参数估计和预测的不同方法在蒙古栎次生林经营中的适用性和精确性,为更好开展蒙古栎林经营提供理论依据和技术参数。【方法】以吉林省157块蒙古栎纯林为研究对象,运用Kolmogorov-Smirnov(K-S)检验和误差指数比较最大似然法、矩法和百分位法估计和预测蒙古栎纯林分Weibull三参数的优劣。首先分析评价最大似然法、矩法和百分位法3种参数估计方法;然后为预测林分分布变化,建立参数预测法、参数回收法和参数百分位法的估计参数与林分年龄、平均高、优势高和林分密度等林分因子之间的回归模型;最后将回归方程计算得出的各参数代入Weibull分布,以预测直径分布变化趋势。【结果】最大似然法、矩法和百分位法均较好地估计了蒙古栎纯林的直径分布,K-S检验的接受率在82.80%-96.18%之间,其中最大似然法的接受率最高;通过配对t检验比较3种估计方法,最大似然法的误差指数平均数在显著水平为0.05时显著性地小于其他2种方法。在预测蒙古栎林分直径分布时,通过K-S检验可知,百分位法的接受率为64.45%,均高于其他2种方法;通过配对t检验比较3种预测方法,参数百分位法在显著水平为0.1时比参数预测法和参数回收法更加精确。【结论】在估计蒙古栎林分直径分布时,最大似然法较矩法和百分位法效果好;在预测蒙古栎林分直径分布时,参数百分位法较参数预测法和参数回收法效果好。 展开更多
关键词 WEIBULL分布 最大似然估计 参数预测法 参数回收 百分位 蒙古栎
下载PDF
带预测参数的同伦分析方法及其在两个非线性系统中的应用(英文) 被引量:1
4
作者 姜丙利 柳银萍 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第3期131-139,148,共10页
在传统同伦分析法(HAM)的基础上,新方法(PHAM)通过引入一个预测参数及相关条件来预测一个非线性微分系统是否具有多个解,通过将此方法分别应用到两个非线性微分系统中,成功地获得了相应系统多个有效的解析近似解.
关键词 解析近似解 非线性微分系统 预测参数的同伦分析(PHAM)
下载PDF
舟坝水库诱发地震震级预测 被引量:1
5
作者 刘家豪 朱国维 周俊杰 《高原地震》 2020年第3期13-20,共8页
水库诱发地震是诱发地震中震例较多、危害较大的类型,对其震级的预测有利于水库的正常工作。综合分析了舟坝水库的区域地质条件,采用类比法、概率统计检验法、综合影响参数预测法和两级模糊综合评判法等4种预测方法,对水库诱发地震震级... 水库诱发地震是诱发地震中震例较多、危害较大的类型,对其震级的预测有利于水库的正常工作。综合分析了舟坝水库的区域地质条件,采用类比法、概率统计检验法、综合影响参数预测法和两级模糊综合评判法等4种预测方法,对水库诱发地震震级进行了整体和分区预测。预测得出,诱发地震最大震级小于5级,库首—罗锅滩区取3.7级为预测的最大震级;罗锅滩—库尾区取4.5级为预测最大震级。预测得出的水库诱震震级,为可能出现的水库诱发地震问题提供了决策依据。 展开更多
关键词 水库诱发地震预测 类比 概率统计检验 综合影响参数预测法 两级模糊综合评判
下载PDF
基于ARIMA模型的社会消费品零售总额的分析与预测 被引量:3
6
作者 陈韵洁 许萍 白同元 《现代商贸工业》 2021年第34期26-27,共2页
通过研究我国1985年~2019年社会消费品零售总额变动情况,以社会消费品零售总额的预测为背景,利用时间序列有关知识对我国1985~2019年的社会消费品零售总额进行了Holt两参数指数平滑预测法。接着建立ARIMA模型,该模型较好地消除了时间序... 通过研究我国1985年~2019年社会消费品零售总额变动情况,以社会消费品零售总额的预测为背景,利用时间序列有关知识对我国1985~2019年的社会消费品零售总额进行了Holt两参数指数平滑预测法。接着建立ARIMA模型,该模型较好地消除了时间序列趋势的变动的影响,并利用该模型对未来序列值作出了短期预测。 展开更多
关键词 时间序列 Holt两参数指数平滑预测 ARIMA模型
下载PDF
基于改进胶囊神经网络的乐音主频识别研究
7
作者 刘玥彤 吴迪 滕华 《南京理工大学学报》 CAS CSCD 北大核心 2023年第2期207-213,共7页
为了提高乐音主频识别性能,采用胶囊神经网络用于主频识别,并对胶囊神经网络特征相似计算方法进行改进优化,以增强胶囊神经网络的主频识别适应度。对乐音音符的端点检测与有效分割后采用线性预测倒谱参数法获得乐音主频特征向量。建立... 为了提高乐音主频识别性能,采用胶囊神经网络用于主频识别,并对胶囊神经网络特征相似计算方法进行改进优化,以增强胶囊神经网络的主频识别适应度。对乐音音符的端点检测与有效分割后采用线性预测倒谱参数法获得乐音主频特征向量。建立基于胶囊神经网络的乐音主频识别模型,并采用动态路由获得稳定的胶囊神经网络结构核心参数。采用余弦相似度对传统的内积计算进行有效改进,优化特征差异判断策略。采用改进的胶囊神经网络算法用于乐音主频识别。试验结果证明,合理设置胶囊神经网络的耦合系数、平衡系数和类别阈值单音集和曲谱连续集均能获得较高的乐音主频识别性能。相比于常用乐音识别算法,该文所提算法能够获得更高的识别准确率和稳定性。 展开更多
关键词 乐音主频识别 胶囊神经网络 线性预测倒谱参数 特征提取 余弦相似
下载PDF
隧道地质超前预报新技术概述 被引量:17
8
作者 郭朋超 《铁道建筑技术》 2004年第2期24-27,共4页
结合本单位近年来开展超前地质预报工作的实例,对多种隧道地质超前预报方法的分类、测试原理、适用条件、设备配备、探测解译关键技术分别进行了阐述。
关键词 隧道工程 地质预报技术 地质分析 断层参数预测法 地质体投射
下载PDF
Prediction and optimization of process parameter of friction stir welded AA5083-H111 aluminum alloy using response surface methodology 被引量:26
9
作者 R.Palanivel P.Koshy Mathews 《Journal of Central South University》 SCIE EI CAS 2012年第1期1-8,共8页
A systematic approach was presented to develop the empirical model for predicting the ultimate tensile strength of AA5083-H111 aluminum alloy which is widely used in ship building industry by incorporating friction st... A systematic approach was presented to develop the empirical model for predicting the ultimate tensile strength of AA5083-H111 aluminum alloy which is widely used in ship building industry by incorporating friction stir welding(FSW) process parameters such as tool rotational speed,welding speed,and axial force.FSW was carried out considering three-factor five-level central composite rotatable design with full replications technique.Response surface methodology(RSM) was applied to developing linear regression model for establishing the relationship between the FSW process parameters and ultimate tensile strength.Analysis of variance(ANOVA) technique was used to check the adequacy of the developed model.The FSW process parameters were also optimized using response surface methodology(RSM) to maximize the ultimate tensile strength.The joint welded at a tool rotational speed of 1 000 r/min,a welding speed of 69 mm/min and an axial force of 1.33 t exhibits higher tensile strength compared with other joints. 展开更多
关键词 friction stir welding design expert design of experiments analysis of variance (ANOVA) response surfacemethodology (RSM) optimization
下载PDF
Study on the forecast method for underground coal mine
10
作者 孙继平 任慧 +1 位作者 任兰铸 王坤 《Journal of Coal Science & Engineering(China)》 2006年第2期94-96,共3页
At present,coal mine fires were forecasted with some temperature,smog,CO,CO_2,etc,however,this method can't meet the requirements for safe production of coalmines in monitoring accuracy and validity.Overcoming the... At present,coal mine fires were forecasted with some temperature,smog,CO,CO_2,etc,however,this method can't meet the requirements for safe production of coalmines in monitoring accuracy and validity.Overcoming these problems of foregone moni-toring methods,using multi-parameters which include fire image,smog,CO,CO_2,O_2,etc,the paper put forward a synthetical analysis monitor with advanced technology of neuralnetwork.The research and application of this method has significance in theory and prac-tical value for coal mine fire forecast. 展开更多
关键词 mine fire fire image multi-parameters FORECAST
下载PDF
Research on relations between failure heights of overburden strata and ~] / mining face parameters and forecasting method
11
作者 尹增德 杨贵 《Journal of Coal Science & Engineering(China)》 2007年第3期332-335,共4页
The commercial FEM software ANSYS was used to analyze the failure characteristics of overburden strata under the conditions of different lengths of mining faces. It was shown that the parameters of mining faces, espec... The commercial FEM software ANSYS was used to analyze the failure characteristics of overburden strata under the conditions of different lengths of mining faces. It was shown that the parameters of mining faces, especially the length was the important factor to the failure heights and shapes of overburden strata. Fuzzy mathematics and statistical methods were used to analyze the forecasting method of the failure height of overburden strata influenced by the parameters of mining face based on the measured data under the conditions of fully-mechanized mining of general hardness cover rocks. On the basis of these analyses, a new forecasting formula was gotten. The forecasting result conforms to the in situ measured value. The result has a very important application value in safe and high-efficient mining, and has a very important advancing function to theoretical studies. 展开更多
关键词 overburden strata parameters of mining face forecasting method
下载PDF
SVM model for estimating the parameters of the probability-integral method of predicting mining subsidence 被引量:11
12
作者 ZHANG Hua WANG Yun-jia LI Yong-feng 《Mining Science and Technology》 EI CAS 2009年第3期385-388,394,共5页
A new mathematical model to estimate the parameters of the probability-integral method for mining subsidence prediction is proposed.Based on least squares support vector machine(LS-SVM) theory, it is capable of improv... A new mathematical model to estimate the parameters of the probability-integral method for mining subsidence prediction is proposed.Based on least squares support vector machine(LS-SVM) theory, it is capable of improving the precision and reliability of mining subsidence prediction.Many of the geological and mining factors involved are related in a nonlinear way.The new model is based on statistical theory(SLT) and empirical risk minimization(ERM) principles.Typical data collected from observation stations were used for the learning and training samples.The calculated results from the LS-SVM model were compared with the prediction results of a back propagation neural network(BPNN) model.The results show that the parameters were more precisely predicted by the LS-SVM model than by the BPNN model.The LS-SVM model was faster in computation and had better generalized performance.It provides a highly effective method for calculating the predicting parameters of the probability-integral method. 展开更多
关键词 mining subsidence probability-integral method least squares support vector machine artificial neural networks
下载PDF
Aeroengine Performance Parameter Prediction Based on Improved Regularization Extreme Learning Machine
13
作者 CAO Yuyuan ZHANG Bowen WANG Huawei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第4期545-559,共15页
Performance parameter prediction technology is the core research content of aeroengine health management,and more and more machine learning algorithms have been applied in the field.Regularized extreme learning machin... Performance parameter prediction technology is the core research content of aeroengine health management,and more and more machine learning algorithms have been applied in the field.Regularized extreme learning machine(RELM)is one of them.However,the regularization parameter determination of RELM consumes computational resources,which makes it unsuitable in the field of aeroengine performance parameter prediction with a large amount of data.This paper uses the forward and backward segmentation(FBS)algorithms to improve the RELM performance,and introduces an adaptive step size determination method and an improved solution mechanism to obtain a new machine learning algorithm.While maintaining good generalization,the new algorithm is not sensitive to regularization parameters,which greatly saves computing resources.The experimental results on the public data sets prove the above conclusions.Finally,the new algorithm is applied to the prediction of aero-engine performance parameters,and the excellent prediction performance is achieved. 展开更多
关键词 extreme learning machine AEROENGINE performance parameter prediction forward and backward segmentation algorithms
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部