The P+ α-Si /N+ polycrystalline solar cell is molded using the AMPS-1D device simulator to explore the new high efficiency thin film poly-silicon solar cell. In order to analyze the characteristics of this device and...The P+ α-Si /N+ polycrystalline solar cell is molded using the AMPS-1D device simulator to explore the new high efficiency thin film poly-silicon solar cell. In order to analyze the characteristics of this device and the thickness of N+ poly-silicon, we consider the impurity concentration in the N+ poly-silicon layer and the work function of transparent conductive oxide (TCO) in front contact in the calculation. The thickness of N+ poly-silicon has little impact on the device when the thickness varies from 20 μm to 300 μm. The effects of impurity concentration in polycrystalline are analyzed. The conclusion is drawn that the open-circuit voltage (Voc) of P+ α-Si /N+ polycrystalline solar cell is very high, reaching 752 mV, and the conversion efficiency reaches 9.44%. Therefore, based on the above optimum parameters the study on the device formed by P+ α-Si/N+ poly-silicon is significant in exploring the high efficiency poly-silicon solar cell.展开更多
基金supported by the Natural Science Foundation of Fujian Province of China (Grant No. A0220001)Science Research Project of Leshan Vocational & Technical College (Grant No. KY2011001)the Key Research Project in Science and Technology of Leshan (Grant No. 2011GZD050)
文摘The P+ α-Si /N+ polycrystalline solar cell is molded using the AMPS-1D device simulator to explore the new high efficiency thin film poly-silicon solar cell. In order to analyze the characteristics of this device and the thickness of N+ poly-silicon, we consider the impurity concentration in the N+ poly-silicon layer and the work function of transparent conductive oxide (TCO) in front contact in the calculation. The thickness of N+ poly-silicon has little impact on the device when the thickness varies from 20 μm to 300 μm. The effects of impurity concentration in polycrystalline are analyzed. The conclusion is drawn that the open-circuit voltage (Voc) of P+ α-Si /N+ polycrystalline solar cell is very high, reaching 752 mV, and the conversion efficiency reaches 9.44%. Therefore, based on the above optimum parameters the study on the device formed by P+ α-Si/N+ poly-silicon is significant in exploring the high efficiency poly-silicon solar cell.