In this paper, we investigate the weighted iterative decoding to improve the performance of turbo-polar code. First of all, a minimum weighted mean square error criterion is proposed to optimize the scaling factors(SF...In this paper, we investigate the weighted iterative decoding to improve the performance of turbo-polar code. First of all, a minimum weighted mean square error criterion is proposed to optimize the scaling factors(SFs). Secondly, for two typical iterative algorithms,such as soft cancellation(SCAN) and belief propagation(BP) decoding, genie-aided decoders are proposed as the ideal reference of the practical decoding. Guided by this optimization framework, the optimal SFs of SCAN or BP decoders are obtained. The bit error rate performance of turbo-polar code with the optimal SFs can achieve 0.3 dB or 0.7 dB performance gains over the standard SCAN or BP decoding respectively.展开更多
In this paper,a two-layer hierarchical structure of optimization and control for polypropylene grade transition was raised to overcome process uncertain disturbances that led to the large deviation between the open-lo...In this paper,a two-layer hierarchical structure of optimization and control for polypropylene grade transition was raised to overcome process uncertain disturbances that led to the large deviation between the open-loop reference trajectory and the actual process.In the upper layer,the variant time scale based control vector parametric methods(VTS-CVP) was used for dynamic optimization of transition reference trajectory,while nonlinear model predictive controller(NMPC) based on closed-loop subspace and piece-wise linear(SSARX-PWL) model in the lower layer was tracking to the reference trajectory from the upper layer for overcoming high-frequency disturbances.Besides,mechanism about trajectory deviation detection and optimal trajectory updating online were introduced to ensure a smooth transition for the entire process.The proposed method was validated with the real data from an industrial double-loop propylene polymerization reaction process with developed dynamic mechanism mathematical model.展开更多
基金supported by the National Natural Science Foundation of China(No.61671080)the National Natural Science Foundation of China(No.61771066)Nokia Beijing Bell Lab
文摘In this paper, we investigate the weighted iterative decoding to improve the performance of turbo-polar code. First of all, a minimum weighted mean square error criterion is proposed to optimize the scaling factors(SFs). Secondly, for two typical iterative algorithms,such as soft cancellation(SCAN) and belief propagation(BP) decoding, genie-aided decoders are proposed as the ideal reference of the practical decoding. Guided by this optimization framework, the optimal SFs of SCAN or BP decoders are obtained. The bit error rate performance of turbo-polar code with the optimal SFs can achieve 0.3 dB or 0.7 dB performance gains over the standard SCAN or BP decoding respectively.
基金Supported by the Electronic Information Industry Development Foundation of China(20140806)the National Natural Science Foundation of China(61374121,61134007)
文摘In this paper,a two-layer hierarchical structure of optimization and control for polypropylene grade transition was raised to overcome process uncertain disturbances that led to the large deviation between the open-loop reference trajectory and the actual process.In the upper layer,the variant time scale based control vector parametric methods(VTS-CVP) was used for dynamic optimization of transition reference trajectory,while nonlinear model predictive controller(NMPC) based on closed-loop subspace and piece-wise linear(SSARX-PWL) model in the lower layer was tracking to the reference trajectory from the upper layer for overcoming high-frequency disturbances.Besides,mechanism about trajectory deviation detection and optimal trajectory updating online were introduced to ensure a smooth transition for the entire process.The proposed method was validated with the real data from an industrial double-loop propylene polymerization reaction process with developed dynamic mechanism mathematical model.