In this paper, we have discussed the food movement in stomach with thermal bound- ary conditions. Eyring-Prandtl fluid model is considered. Formulation of the considered phenomena have been developed for both fixed an...In this paper, we have discussed the food movement in stomach with thermal bound- ary conditions. Eyring-Prandtl fluid model is considered. Formulation of the considered phenomena have been developed for both fixed and moving frame of references. Regular perturbation is used to find the solution of stream function, temperature profile and pressure gradient. Analysis has been carried out for velocity, "stream function, temper- ature, pressure gradient and heat transfer". Appearance of pressure gradient is quite complicated so to get the expression for pressure rise we have used numerical integra- tion. It is perceived that the velocity close to the channel walls is not same in outlook of the Eyrin^Prandtl fluid parameter taken as fl and Hartman number M. The velocity decreases by increasing β and M.展开更多
文摘In this paper, we have discussed the food movement in stomach with thermal bound- ary conditions. Eyring-Prandtl fluid model is considered. Formulation of the considered phenomena have been developed for both fixed and moving frame of references. Regular perturbation is used to find the solution of stream function, temperature profile and pressure gradient. Analysis has been carried out for velocity, "stream function, temper- ature, pressure gradient and heat transfer". Appearance of pressure gradient is quite complicated so to get the expression for pressure rise we have used numerical integra- tion. It is perceived that the velocity close to the channel walls is not same in outlook of the Eyrin^Prandtl fluid parameter taken as fl and Hartman number M. The velocity decreases by increasing β and M.