With the development of precision agriculture, the research that applies Remote Sensing technology, especially hyperspectral remote sensing, to realize crop management, monitoring and yield estimation, has been concer...With the development of precision agriculture, the research that applies Remote Sensing technology, especially hyperspectral remote sensing, to realize crop management, monitoring and yield estimation, has been concerned. Nowadays, the growth-monitoring and yield-estimating methods in rice, wheat and other annual crops develop rapidly with some achievements having already been put into service. But the yield estimation research on perennial economic crops is few. Taking peren- nial citrus trees as the research object, using ASD spectrometer to collect citrus canopy spectral, this article studied and analyzed the citrus of veget&tion index and its relationship on yield, synthetically considered the influence of the agriculture pa- rameters on crop yield, and finally constructed the citrus yield estimation model based on the spectral data and agronomic parameters. Through the Significance Test and Samples' Test, olutained that the model's fitting degree was R=0.631, F= 13.201, P〈0.01 and the error rate of estimating accuracy was controlled in the range 3%-16%, proving that the model has statistical signification and reliability. It concluded that hyperspectral acquired from citrus canopy has substantial potential for citrus yield estimation. This study is an application and exploration of Hyperspectral Remote Sensing technology in the citrus yield estimation.展开更多
Hyperspectral reflectance (350-2500 nm) measurements were made over two experimental rice fields containing two cultivars treated with three levels of nitrogen application.Four different transformations of the reflect...Hyperspectral reflectance (350-2500 nm) measurements were made over two experimental rice fields containing two cultivars treated with three levels of nitrogen application.Four different transformations of the reflectance data were analyzed for their capability to predict rice biophysical parameters,comprising leaf area index (LAI;m-2 green leaf area m-2 soil) and green leaf chlorophyll density (GLCD;mg chlorophyll m 2 soil),using stepwise multiple regression (SMR) models and support vector machines (SVMs).Four transformations of the rice canopy data were made,comprising reflectances (R),first-order derivative reflectances (D1),second-order derivative reflectances (D2),and logarithm transformation of reflectances (LOG).The polynomial kernel (POLY) of the SVM using R was the best model to predict rice LAI,with a root mean square error (RMSE) of 1.0496 LAI units.The analysis of variance kernel of SVM using LOG was the best model to predict rice GLCD,with an RMSE of 523.0741 mg m-2.The SVM approach was not only superior to SMR models for predicting the rice biophysical parameters,but also provided a useful exploratory and predictive tool for analyzing different transformations of reflectance data.展开更多
基金Supported by the central university basic scientific research fund(XDJK2009C006)from Ministry of Educationthe National Youth Science Fund(41201436)from National Science Counci~~
文摘With the development of precision agriculture, the research that applies Remote Sensing technology, especially hyperspectral remote sensing, to realize crop management, monitoring and yield estimation, has been concerned. Nowadays, the growth-monitoring and yield-estimating methods in rice, wheat and other annual crops develop rapidly with some achievements having already been put into service. But the yield estimation research on perennial economic crops is few. Taking peren- nial citrus trees as the research object, using ASD spectrometer to collect citrus canopy spectral, this article studied and analyzed the citrus of veget&tion index and its relationship on yield, synthetically considered the influence of the agriculture pa- rameters on crop yield, and finally constructed the citrus yield estimation model based on the spectral data and agronomic parameters. Through the Significance Test and Samples' Test, olutained that the model's fitting degree was R=0.631, F= 13.201, P〈0.01 and the error rate of estimating accuracy was controlled in the range 3%-16%, proving that the model has statistical signification and reliability. It concluded that hyperspectral acquired from citrus canopy has substantial potential for citrus yield estimation. This study is an application and exploration of Hyperspectral Remote Sensing technology in the citrus yield estimation.
基金supported by the National Natural Science Foundation of China(Grant Nos. 40571115 and 40271078)the National Hi-Tech Research and Development Program of China(Grant No. 2006AA10Z203)
文摘Hyperspectral reflectance (350-2500 nm) measurements were made over two experimental rice fields containing two cultivars treated with three levels of nitrogen application.Four different transformations of the reflectance data were analyzed for their capability to predict rice biophysical parameters,comprising leaf area index (LAI;m-2 green leaf area m-2 soil) and green leaf chlorophyll density (GLCD;mg chlorophyll m 2 soil),using stepwise multiple regression (SMR) models and support vector machines (SVMs).Four transformations of the rice canopy data were made,comprising reflectances (R),first-order derivative reflectances (D1),second-order derivative reflectances (D2),and logarithm transformation of reflectances (LOG).The polynomial kernel (POLY) of the SVM using R was the best model to predict rice LAI,with a root mean square error (RMSE) of 1.0496 LAI units.The analysis of variance kernel of SVM using LOG was the best model to predict rice GLCD,with an RMSE of 523.0741 mg m-2.The SVM approach was not only superior to SMR models for predicting the rice biophysical parameters,but also provided a useful exploratory and predictive tool for analyzing different transformations of reflectance data.