传统的分形图像编码时间过长,限制了它的应用。为了加快编码速度,提出基于半叉迹特征的快速分形编码算法,该算法主要包括:定义子块半叉迹特征,导出子块的均方根误差与子块半叉迹特征之间的关系。实验结果表明:该算法较基本分析编码算法...传统的分形图像编码时间过长,限制了它的应用。为了加快编码速度,提出基于半叉迹特征的快速分形编码算法,该算法主要包括:定义子块半叉迹特征,导出子块的均方根误差与子块半叉迹特征之间的关系。实验结果表明:该算法较基本分析编码算法,在解码图像PSNR平均提高约0.63 d B的情况下,平均加快编码速度55倍;较文献[10]提出的主对角和算法和文献[11]提出的叉迹算法,在编码时间不变的情况下,改善了编码性能,提高了解码图像质量;基于子块特征的快速编码算法,其编码性能与图像的复杂程度有关,细节信息越丰富的图像,编码性能越差。展开更多
AIM: To investigate whether the 7-difluoromethoxyl-5, 4'-di-n-octylgenistein (DFOG), a novel synthetic genistein analogue, affects the growth of gastric cancer cells and its mechanisms. METHODS: A series of genist...AIM: To investigate whether the 7-difluoromethoxyl-5, 4'-di-n-octylgenistein (DFOG), a novel synthetic genistein analogue, affects the growth of gastric cancer cells and its mechanisms. METHODS: A series of genistein analogues were prepared by difluoromethylation and alkylation, and human gastric cancer cell lines AGS and SGC-7901 cultured in vitro were treated with various concentrations of genistein and genistein analogues. The cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cells were incubated by DFOG at different concentrations. The growth inhibitory effects were evaluated using MTT and clonogenic assay. The distribution of the phase in cell cycle was analyzed using flow cytometric analysis with propidium iodide staining. The expression of the transcription factor forkhead box M1 (FOXM1) was analyzed by reverse transcription-polymerase chain reaction and Western blotting. The expression levelsof CDK1, Cdc25B, cyclin B and p27KIP1 protein were detected using Western blotting. RESULTS: Nine of the genistein analogues had more effective antitumor activity than genistein. Among the tested analogues, DFOG possessed the strongest activity against AGS and SGC-7901 cells in vitro. DFOG significantly inhibited the cell viability and colony formation of AGS and SGC-7901 cells. Moreover, DFOG efficaciously arrested the cell cycle in G2/M phase. DFOG decreased the expression of FOXM1 and its downstream genes, such as CDK1, Cdc25B, cyclin B, and increased p27KIP1 at protein levels. Knockdown of FOXM1 by small interfering RNA before DFOG treatment resulted in enhanced cell growth inhibition in AGS cells. Up-regulation of FOXM1 by cDNA transfection attenuated DFOG-induced cell growth inhibition in AGS cells. CONCLUSION: DFOG inhibits the growth of human gastric cancer cells by down-regulating the FOXM1 expression.展开更多
文摘传统的分形图像编码时间过长,限制了它的应用。为了加快编码速度,提出基于半叉迹特征的快速分形编码算法,该算法主要包括:定义子块半叉迹特征,导出子块的均方根误差与子块半叉迹特征之间的关系。实验结果表明:该算法较基本分析编码算法,在解码图像PSNR平均提高约0.63 d B的情况下,平均加快编码速度55倍;较文献[10]提出的主对角和算法和文献[11]提出的叉迹算法,在编码时间不变的情况下,改善了编码性能,提高了解码图像质量;基于子块特征的快速编码算法,其编码性能与图像的复杂程度有关,细节信息越丰富的图像,编码性能越差。
基金National Natural Science Foundation of China, No. 81172375Hunan Provincial Natural Science Foundation, No. 03JJY5009
文摘AIM: To investigate whether the 7-difluoromethoxyl-5, 4'-di-n-octylgenistein (DFOG), a novel synthetic genistein analogue, affects the growth of gastric cancer cells and its mechanisms. METHODS: A series of genistein analogues were prepared by difluoromethylation and alkylation, and human gastric cancer cell lines AGS and SGC-7901 cultured in vitro were treated with various concentrations of genistein and genistein analogues. The cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cells were incubated by DFOG at different concentrations. The growth inhibitory effects were evaluated using MTT and clonogenic assay. The distribution of the phase in cell cycle was analyzed using flow cytometric analysis with propidium iodide staining. The expression of the transcription factor forkhead box M1 (FOXM1) was analyzed by reverse transcription-polymerase chain reaction and Western blotting. The expression levelsof CDK1, Cdc25B, cyclin B and p27KIP1 protein were detected using Western blotting. RESULTS: Nine of the genistein analogues had more effective antitumor activity than genistein. Among the tested analogues, DFOG possessed the strongest activity against AGS and SGC-7901 cells in vitro. DFOG significantly inhibited the cell viability and colony formation of AGS and SGC-7901 cells. Moreover, DFOG efficaciously arrested the cell cycle in G2/M phase. DFOG decreased the expression of FOXM1 and its downstream genes, such as CDK1, Cdc25B, cyclin B, and increased p27KIP1 at protein levels. Knockdown of FOXM1 by small interfering RNA before DFOG treatment resulted in enhanced cell growth inhibition in AGS cells. Up-regulation of FOXM1 by cDNA transfection attenuated DFOG-induced cell growth inhibition in AGS cells. CONCLUSION: DFOG inhibits the growth of human gastric cancer cells by down-regulating the FOXM1 expression.