针对串联谐振型双有源桥(dual active bridges,简称DAB)双向直流变换器,该文提出一种基于变频控制的电流峰值优化控制策略.首先,利用时域分析法获得双有源桥变换器中峰值电感电流和传输功率的归一化解析式;然后,将所构建时域模型与传统...针对串联谐振型双有源桥(dual active bridges,简称DAB)双向直流变换器,该文提出一种基于变频控制的电流峰值优化控制策略.首先,利用时域分析法获得双有源桥变换器中峰值电感电流和传输功率的归一化解析式;然后,将所构建时域模型与传统基波分析法的计算结果进行比较,并推导出软开关范围且对死区时间进行分析.最后,通过仿真实验验证了时域分析结果和电流峰值优化策略.仿真结果表明,在不同功率等级下所提优化控制策略相对于现有定频控制能有效地降低电流峰值.展开更多
针对有源桥式隔离型三端口变换器(triple active bridge,TAB)存在的端口功率耦合和控制模型非线性问题,提出一种基于串联谐振网络的隔离型三端口变换器解耦方法。首先根据拓扑T/Δ等效变换和谐振工作原理对变换器的功率传输模型进行推导...针对有源桥式隔离型三端口变换器(triple active bridge,TAB)存在的端口功率耦合和控制模型非线性问题,提出一种基于串联谐振网络的隔离型三端口变换器解耦方法。首先根据拓扑T/Δ等效变换和谐振工作原理对变换器的功率传输模型进行推导,分析了解耦网络对控制系统非线性特性的抑制作用,为系统控制环路设计和谐振参数的选取提供了依据。其次对单周期内变换器的工作模态和软开关特性进行了分析,给出功率传输电感参与谐振的实际工作过程。此外,对所研究拓扑和未解耦拓扑分别进行仿真,结果表明,该方法能够有效消除变换器功率控制环路的相互耦合,使拓扑等效为2个独立的DC/DC变换器,分别控制运行,提高系统的动态响应速度和稳定性。最后,通过试验样机在不同工况下进行实验验证,结果证明了原理分析的正确性和谐振解耦方法的有效性。展开更多
基于移相控制的双有源桥串联谐振变换器(dual-bridge series resonant converter,DBSRC)在传输功率的快速调控过程中,移相角将发生较大的阶跃变化,导致谐振腔出现大幅度长时间的振荡过程,不仅严重恶化了变换器的动态性能,电路元件也会...基于移相控制的双有源桥串联谐振变换器(dual-bridge series resonant converter,DBSRC)在传输功率的快速调控过程中,移相角将发生较大的阶跃变化,导致谐振腔出现大幅度长时间的振荡过程,不仅严重恶化了变换器的动态性能,电路元件也会面临严重的过电压和过电流风险。该文首先基于基波分析法推导DBSRC暂态过程的通用计算模型,分析暂态过程中的振荡特性,精确估算暂态过程中的谐振电压峰值、谐振电流峰值以及暂态过渡时间,评估暂态过程中的过电压与过电流程度。基于暂态过程计算模型,提出一种振荡的抑制方法,使变换器在一个开关周期后能够到达新的稳定状态,有效地避免了过电压与过电流的风险,并且大幅改善了闭环控制的动态特性。最后,通过仿真与实验结果验证理论分析和所提出的控制方法。展开更多
文摘针对串联谐振型双有源桥(dual active bridges,简称DAB)双向直流变换器,该文提出一种基于变频控制的电流峰值优化控制策略.首先,利用时域分析法获得双有源桥变换器中峰值电感电流和传输功率的归一化解析式;然后,将所构建时域模型与传统基波分析法的计算结果进行比较,并推导出软开关范围且对死区时间进行分析.最后,通过仿真实验验证了时域分析结果和电流峰值优化策略.仿真结果表明,在不同功率等级下所提优化控制策略相对于现有定频控制能有效地降低电流峰值.
文摘针对有源桥式隔离型三端口变换器(triple active bridge,TAB)存在的端口功率耦合和控制模型非线性问题,提出一种基于串联谐振网络的隔离型三端口变换器解耦方法。首先根据拓扑T/Δ等效变换和谐振工作原理对变换器的功率传输模型进行推导,分析了解耦网络对控制系统非线性特性的抑制作用,为系统控制环路设计和谐振参数的选取提供了依据。其次对单周期内变换器的工作模态和软开关特性进行了分析,给出功率传输电感参与谐振的实际工作过程。此外,对所研究拓扑和未解耦拓扑分别进行仿真,结果表明,该方法能够有效消除变换器功率控制环路的相互耦合,使拓扑等效为2个独立的DC/DC变换器,分别控制运行,提高系统的动态响应速度和稳定性。最后,通过试验样机在不同工况下进行实验验证,结果证明了原理分析的正确性和谐振解耦方法的有效性。
文摘基于移相控制的双有源桥串联谐振变换器(dual-bridge series resonant converter,DBSRC)在传输功率的快速调控过程中,移相角将发生较大的阶跃变化,导致谐振腔出现大幅度长时间的振荡过程,不仅严重恶化了变换器的动态性能,电路元件也会面临严重的过电压和过电流风险。该文首先基于基波分析法推导DBSRC暂态过程的通用计算模型,分析暂态过程中的振荡特性,精确估算暂态过程中的谐振电压峰值、谐振电流峰值以及暂态过渡时间,评估暂态过程中的过电压与过电流程度。基于暂态过程计算模型,提出一种振荡的抑制方法,使变换器在一个开关周期后能够到达新的稳定状态,有效地避免了过电压与过电流的风险,并且大幅改善了闭环控制的动态特性。最后,通过仿真与实验结果验证理论分析和所提出的控制方法。