The microscopic equations of motion including many-body effects are derived to study the intersubband polarization in the double quantum well structure induced by an ultrafast pumping infrared light. Based on the self...The microscopic equations of motion including many-body effects are derived to study the intersubband polarization in the double quantum well structure induced by an ultrafast pumping infrared light. Based on the selfconsistent field theory, the transient probe absorption coefficient is calculated. These calculations are beyond the previous steady-state assumption. Transient probe absorption spectra are calculated under different pumping intensity and various pump probe delay.展开更多
基金the National Fund for Distinguished Young Scholars of China,国家重点基础研究发展计划(973计划),上海市科委资助项目
文摘The microscopic equations of motion including many-body effects are derived to study the intersubband polarization in the double quantum well structure induced by an ultrafast pumping infrared light. Based on the selfconsistent field theory, the transient probe absorption coefficient is calculated. These calculations are beyond the previous steady-state assumption. Transient probe absorption spectra are calculated under different pumping intensity and various pump probe delay.