深度强化学习在训练过程中会探索大量环境样本,造成算法收敛时间过长,而重用或传输来自先前任务(源任务)学习的知识,对算法在新任务(目标任务)的学习具有提高算法收敛速度的潜力。为了提高算法学习效率,提出一种双Q网络学习的迁移强化...深度强化学习在训练过程中会探索大量环境样本,造成算法收敛时间过长,而重用或传输来自先前任务(源任务)学习的知识,对算法在新任务(目标任务)的学习具有提高算法收敛速度的潜力。为了提高算法学习效率,提出一种双Q网络学习的迁移强化学习算法,其基于actor-critic框架迁移源任务最优值函数的知识,使目标任务中值函数网络对策略作出更准确的评价,引导策略快速向最优策略方向更新。将该算法用于Open AI Gym以及在三维空间机械臂到达目标物位置的实验中,相比于常规深度强化学习算法取得了更好的效果,实验证明提出的双Q网络学习的迁移强化学习算法具有较快的收敛速度,并且在训练过程中算法探索更加稳定。展开更多
为调整不同路段的限速值,平滑交通流,从而提升高速公路车辆通行的安全性和效率,针对交通瓶颈区设计一种基于深度强化学习的平滑车速管控系统。该系统主要包含动态限速启动、限速值确定与更新和情报板动态发布等3个模块。将深度强化学习...为调整不同路段的限速值,平滑交通流,从而提升高速公路车辆通行的安全性和效率,针对交通瓶颈区设计一种基于深度强化学习的平滑车速管控系统。该系统主要包含动态限速启动、限速值确定与更新和情报板动态发布等3个模块。将深度强化学习算法DDQN(Double Deep Q-Network)引入系统中,提出一种基于DDQN的平滑车速控制策略,从目标网络和经验回顾2个维度提升该算法的性能。基于元胞传输模型(Cellular Transmission Model,CTM)对宁夏高速公路某路段的交通流运行场景进行仿真,以车辆总通行时间和车流量为评价指标验证该系统的有效性,结果表明该系统能提高瓶颈区内拥堵路段车辆的通行效率。展开更多
在现实世界的复杂多智能体环境中,任务的完成通常需要多个智能体之间的相互协作,这促使各种多智能体强化学习方法不断涌现.动作价值函数估计偏差是单智能体强化学习领域中备受关注的一个重要问题,而在多智能体环境中却鲜有研究.针对这...在现实世界的复杂多智能体环境中,任务的完成通常需要多个智能体之间的相互协作,这促使各种多智能体强化学习方法不断涌现.动作价值函数估计偏差是单智能体强化学习领域中备受关注的一个重要问题,而在多智能体环境中却鲜有研究.针对这一问题,分别从理论和实验上证明了多智能体深度确定性策略梯度方法存在价值函数被高估.提出基于双评论家的多智能体深度确定性策略梯度(multiagent deep deterministic policy gradient method based on double critics,MADDPG-DC)方法,通过在双评论家网络上的最小值操作来避免价值被高估,进一步促进智能体学得最优的策略.此外,延迟行动者网络更新,保证行动者网络策略更新的效率和稳定性,提高策略学习和更新的质量.在多智能体粒子环境和交通信号控制环境上的实验结果证明了所提方法的可行性和优越性.展开更多
在深度强化学习中,深度Q网络算法存在严重高估动作值问题,使得智能体的表现不尽人意.尽管深度双Q网络和竞争网络结构可以部分缓解高估带来的影响,但引入双Q网络的同时,有时也会低估动作值.本文提出了一种基于权重值的竞争深度双Q网络算...在深度强化学习中,深度Q网络算法存在严重高估动作值问题,使得智能体的表现不尽人意.尽管深度双Q网络和竞争网络结构可以部分缓解高估带来的影响,但引入双Q网络的同时,有时也会低估动作值.本文提出了一种基于权重值的竞争深度双Q网络算法(Weighted Dueling Double Deep Q-Network,WD3QN),把改进的双估计器及竞争网络结构结合至深度Q网络中,将学习到的可能动作值进行加权产生最终动作值,有效减少估计误差.最后,将算法应用于Open AI Gym平台上的CartPole经典控制问题,仿真结果显示:与已有算法对比,本算法有更好的学习效果,收敛性和训练速度均有提升.展开更多
股票市场具有变化快、干扰因素多、周期数据不足等特点,股票交易是一种不完全信息下的博弈过程,单目标的监督学习模型很难处理这类序列化决策问题。强化学习是解决该类问题的有效途径之一。提出了基于深度强化学习的智能股市操盘手模型I...股票市场具有变化快、干扰因素多、周期数据不足等特点,股票交易是一种不完全信息下的博弈过程,单目标的监督学习模型很难处理这类序列化决策问题。强化学习是解决该类问题的有效途径之一。提出了基于深度强化学习的智能股市操盘手模型ISTG(Intelligent Stock Trader and Gym),融合历史行情数据、技术指标、宏观经济指标等多数据类型,分析评判标准和优秀控制策略,加工长周期数据,实现可增量扩展不同类型数据的复盘模型,自动计算回报标签,训练智能操盘手,并提出直接利用行情数据计算单步确定性动作值的方法。采用中国股市1400多支的有10年以上数据的股票进行多种对比实验,ISTG的总体收益达到13%,优于买入持有总体−7%的表现。展开更多
文摘深度强化学习在训练过程中会探索大量环境样本,造成算法收敛时间过长,而重用或传输来自先前任务(源任务)学习的知识,对算法在新任务(目标任务)的学习具有提高算法收敛速度的潜力。为了提高算法学习效率,提出一种双Q网络学习的迁移强化学习算法,其基于actor-critic框架迁移源任务最优值函数的知识,使目标任务中值函数网络对策略作出更准确的评价,引导策略快速向最优策略方向更新。将该算法用于Open AI Gym以及在三维空间机械臂到达目标物位置的实验中,相比于常规深度强化学习算法取得了更好的效果,实验证明提出的双Q网络学习的迁移强化学习算法具有较快的收敛速度,并且在训练过程中算法探索更加稳定。
文摘为调整不同路段的限速值,平滑交通流,从而提升高速公路车辆通行的安全性和效率,针对交通瓶颈区设计一种基于深度强化学习的平滑车速管控系统。该系统主要包含动态限速启动、限速值确定与更新和情报板动态发布等3个模块。将深度强化学习算法DDQN(Double Deep Q-Network)引入系统中,提出一种基于DDQN的平滑车速控制策略,从目标网络和经验回顾2个维度提升该算法的性能。基于元胞传输模型(Cellular Transmission Model,CTM)对宁夏高速公路某路段的交通流运行场景进行仿真,以车辆总通行时间和车流量为评价指标验证该系统的有效性,结果表明该系统能提高瓶颈区内拥堵路段车辆的通行效率。
文摘在现实世界的复杂多智能体环境中,任务的完成通常需要多个智能体之间的相互协作,这促使各种多智能体强化学习方法不断涌现.动作价值函数估计偏差是单智能体强化学习领域中备受关注的一个重要问题,而在多智能体环境中却鲜有研究.针对这一问题,分别从理论和实验上证明了多智能体深度确定性策略梯度方法存在价值函数被高估.提出基于双评论家的多智能体深度确定性策略梯度(multiagent deep deterministic policy gradient method based on double critics,MADDPG-DC)方法,通过在双评论家网络上的最小值操作来避免价值被高估,进一步促进智能体学得最优的策略.此外,延迟行动者网络更新,保证行动者网络策略更新的效率和稳定性,提高策略学习和更新的质量.在多智能体粒子环境和交通信号控制环境上的实验结果证明了所提方法的可行性和优越性.
文摘在深度强化学习中,深度Q网络算法存在严重高估动作值问题,使得智能体的表现不尽人意.尽管深度双Q网络和竞争网络结构可以部分缓解高估带来的影响,但引入双Q网络的同时,有时也会低估动作值.本文提出了一种基于权重值的竞争深度双Q网络算法(Weighted Dueling Double Deep Q-Network,WD3QN),把改进的双估计器及竞争网络结构结合至深度Q网络中,将学习到的可能动作值进行加权产生最终动作值,有效减少估计误差.最后,将算法应用于Open AI Gym平台上的CartPole经典控制问题,仿真结果显示:与已有算法对比,本算法有更好的学习效果,收敛性和训练速度均有提升.
文摘股票市场具有变化快、干扰因素多、周期数据不足等特点,股票交易是一种不完全信息下的博弈过程,单目标的监督学习模型很难处理这类序列化决策问题。强化学习是解决该类问题的有效途径之一。提出了基于深度强化学习的智能股市操盘手模型ISTG(Intelligent Stock Trader and Gym),融合历史行情数据、技术指标、宏观经济指标等多数据类型,分析评判标准和优秀控制策略,加工长周期数据,实现可增量扩展不同类型数据的复盘模型,自动计算回报标签,训练智能操盘手,并提出直接利用行情数据计算单步确定性动作值的方法。采用中国股市1400多支的有10年以上数据的股票进行多种对比实验,ISTG的总体收益达到13%,优于买入持有总体−7%的表现。