深度强化学习在训练过程中会探索大量环境样本,造成算法收敛时间过长,而重用或传输来自先前任务(源任务)学习的知识,对算法在新任务(目标任务)的学习具有提高算法收敛速度的潜力。为了提高算法学习效率,提出一种双Q网络学习的迁移强化...深度强化学习在训练过程中会探索大量环境样本,造成算法收敛时间过长,而重用或传输来自先前任务(源任务)学习的知识,对算法在新任务(目标任务)的学习具有提高算法收敛速度的潜力。为了提高算法学习效率,提出一种双Q网络学习的迁移强化学习算法,其基于actor-critic框架迁移源任务最优值函数的知识,使目标任务中值函数网络对策略作出更准确的评价,引导策略快速向最优策略方向更新。将该算法用于Open AI Gym以及在三维空间机械臂到达目标物位置的实验中,相比于常规深度强化学习算法取得了更好的效果,实验证明提出的双Q网络学习的迁移强化学习算法具有较快的收敛速度,并且在训练过程中算法探索更加稳定。展开更多
在深度强化学习中,深度Q网络算法存在严重高估动作值问题,使得智能体的表现不尽人意.尽管深度双Q网络和竞争网络结构可以部分缓解高估带来的影响,但引入双Q网络的同时,有时也会低估动作值.本文提出了一种基于权重值的竞争深度双Q网络算...在深度强化学习中,深度Q网络算法存在严重高估动作值问题,使得智能体的表现不尽人意.尽管深度双Q网络和竞争网络结构可以部分缓解高估带来的影响,但引入双Q网络的同时,有时也会低估动作值.本文提出了一种基于权重值的竞争深度双Q网络算法(Weighted Dueling Double Deep Q-Network,WD3QN),把改进的双估计器及竞争网络结构结合至深度Q网络中,将学习到的可能动作值进行加权产生最终动作值,有效减少估计误差.最后,将算法应用于Open AI Gym平台上的CartPole经典控制问题,仿真结果显示:与已有算法对比,本算法有更好的学习效果,收敛性和训练速度均有提升.展开更多
股票市场具有变化快、干扰因素多、周期数据不足等特点,股票交易是一种不完全信息下的博弈过程,单目标的监督学习模型很难处理这类序列化决策问题。强化学习是解决该类问题的有效途径之一。提出了基于深度强化学习的智能股市操盘手模型I...股票市场具有变化快、干扰因素多、周期数据不足等特点,股票交易是一种不完全信息下的博弈过程,单目标的监督学习模型很难处理这类序列化决策问题。强化学习是解决该类问题的有效途径之一。提出了基于深度强化学习的智能股市操盘手模型ISTG(Intelligent Stock Trader and Gym),融合历史行情数据、技术指标、宏观经济指标等多数据类型,分析评判标准和优秀控制策略,加工长周期数据,实现可增量扩展不同类型数据的复盘模型,自动计算回报标签,训练智能操盘手,并提出直接利用行情数据计算单步确定性动作值的方法。采用中国股市1400多支的有10年以上数据的股票进行多种对比实验,ISTG的总体收益达到13%,优于买入持有总体−7%的表现。展开更多
文摘深度强化学习在训练过程中会探索大量环境样本,造成算法收敛时间过长,而重用或传输来自先前任务(源任务)学习的知识,对算法在新任务(目标任务)的学习具有提高算法收敛速度的潜力。为了提高算法学习效率,提出一种双Q网络学习的迁移强化学习算法,其基于actor-critic框架迁移源任务最优值函数的知识,使目标任务中值函数网络对策略作出更准确的评价,引导策略快速向最优策略方向更新。将该算法用于Open AI Gym以及在三维空间机械臂到达目标物位置的实验中,相比于常规深度强化学习算法取得了更好的效果,实验证明提出的双Q网络学习的迁移强化学习算法具有较快的收敛速度,并且在训练过程中算法探索更加稳定。
文摘在深度强化学习中,深度Q网络算法存在严重高估动作值问题,使得智能体的表现不尽人意.尽管深度双Q网络和竞争网络结构可以部分缓解高估带来的影响,但引入双Q网络的同时,有时也会低估动作值.本文提出了一种基于权重值的竞争深度双Q网络算法(Weighted Dueling Double Deep Q-Network,WD3QN),把改进的双估计器及竞争网络结构结合至深度Q网络中,将学习到的可能动作值进行加权产生最终动作值,有效减少估计误差.最后,将算法应用于Open AI Gym平台上的CartPole经典控制问题,仿真结果显示:与已有算法对比,本算法有更好的学习效果,收敛性和训练速度均有提升.
文摘股票市场具有变化快、干扰因素多、周期数据不足等特点,股票交易是一种不完全信息下的博弈过程,单目标的监督学习模型很难处理这类序列化决策问题。强化学习是解决该类问题的有效途径之一。提出了基于深度强化学习的智能股市操盘手模型ISTG(Intelligent Stock Trader and Gym),融合历史行情数据、技术指标、宏观经济指标等多数据类型,分析评判标准和优秀控制策略,加工长周期数据,实现可增量扩展不同类型数据的复盘模型,自动计算回报标签,训练智能操盘手,并提出直接利用行情数据计算单步确定性动作值的方法。采用中国股市1400多支的有10年以上数据的股票进行多种对比实验,ISTG的总体收益达到13%,优于买入持有总体−7%的表现。