While the significance of oscillator dynamics and coupling structure to synchronization behaviors has been well addressed in the literature, little attention has been paid to the possible influence of coupling functio...While the significance of oscillator dynamics and coupling structure to synchronization behaviors has been well addressed in the literature, little attention has been paid to the possible influence of coupling functions. In the present paper, adopting the scheme of dual-channel time-delayed couplings, we investigate how the synchronization behaviors of networked chaotic oscillators are influenced by parameters in the coupling functions. It is found that, with the introduction of the second coupling channel, the synchronization region, as calculated according to the method of master stability function(MSF), can be largely modified. In particular, by a slight change of the time delay, it is found that the synchronization region can be significantly adjusted, or even switched from non-existing to existing. We demonstrate this interesting phenomenon for both situations of processing and propagation induced time delays, as well as for different coupling functions. Our studies shed new light on the mechanism of chaos synchronization, and may potentially be used for the control of complex network dynamics.展开更多
Based on the conduction and transformation of the thermal infrared radiative transfer equation of water target,a twinchannel difference model(DM) was proposed to improve the calibration precision by conquering the lim...Based on the conduction and transformation of the thermal infrared radiative transfer equation of water target,a twinchannel difference model(DM) was proposed to improve the calibration precision by conquering the limitation that the atmospheric condition when image is acquiring cannot be truly obtained in the traditional radiometric simulation calibration method.The analysis of surface,atmosphere and top-of-atmosphere(TOA) radiative energy decomposition demonstrated that the apparent TOA radiance of the uncalibrated channel is the differential combination of two reference channels.The DM avoids impacts from atmospheric temperature and density.The only impact is from water vapor(WV) content.Based on the fitting error analysis of 742 mid-latitude atmospheric profiles(column WV content:0-5×10 3 atm cm) selected from TIGR database,the DM is insensitive to WV content.The maximum error is less than 0.2 K when the view zenith angels(VZAs) of reference channels and uncalibrated channel are less than 30.The error becomes 0.3 K when VZAs range from 30 to 40 and 0.6 K when VZAs are in 40-50.Because the uncertainty increases when VZAs are larger than 50,the best range of VZAs is 30-50.The vicarious calibration results at Lake Qinghai field indicated that the calibration precision of the DM cross-calibration by using MODIS bands 31 and 32 as reference channels to calibrate IRS band 08 is similar to that of vicarious calibration.Therefore,the DM is a reliable alternative tool for sensor on-orbit calibration and validation with high precision and frequency.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.40976114)the Fundamental Research Funds for the Central Universities(Grant No.GK201303002)
文摘While the significance of oscillator dynamics and coupling structure to synchronization behaviors has been well addressed in the literature, little attention has been paid to the possible influence of coupling functions. In the present paper, adopting the scheme of dual-channel time-delayed couplings, we investigate how the synchronization behaviors of networked chaotic oscillators are influenced by parameters in the coupling functions. It is found that, with the introduction of the second coupling channel, the synchronization region, as calculated according to the method of master stability function(MSF), can be largely modified. In particular, by a slight change of the time delay, it is found that the synchronization region can be significantly adjusted, or even switched from non-existing to existing. We demonstrate this interesting phenomenon for both situations of processing and propagation induced time delays, as well as for different coupling functions. Our studies shed new light on the mechanism of chaos synchronization, and may potentially be used for the control of complex network dynamics.
基金supported by the National Natural Science Foundation of China (Grant No. 40971227)the International Corporation Program of Science and Technology Ministry of China (Grant No. 2010DFA21880)
文摘Based on the conduction and transformation of the thermal infrared radiative transfer equation of water target,a twinchannel difference model(DM) was proposed to improve the calibration precision by conquering the limitation that the atmospheric condition when image is acquiring cannot be truly obtained in the traditional radiometric simulation calibration method.The analysis of surface,atmosphere and top-of-atmosphere(TOA) radiative energy decomposition demonstrated that the apparent TOA radiance of the uncalibrated channel is the differential combination of two reference channels.The DM avoids impacts from atmospheric temperature and density.The only impact is from water vapor(WV) content.Based on the fitting error analysis of 742 mid-latitude atmospheric profiles(column WV content:0-5×10 3 atm cm) selected from TIGR database,the DM is insensitive to WV content.The maximum error is less than 0.2 K when the view zenith angels(VZAs) of reference channels and uncalibrated channel are less than 30.The error becomes 0.3 K when VZAs range from 30 to 40 and 0.6 K when VZAs are in 40-50.Because the uncertainty increases when VZAs are larger than 50,the best range of VZAs is 30-50.The vicarious calibration results at Lake Qinghai field indicated that the calibration precision of the DM cross-calibration by using MODIS bands 31 and 32 as reference channels to calibrate IRS band 08 is similar to that of vicarious calibration.Therefore,the DM is a reliable alternative tool for sensor on-orbit calibration and validation with high precision and frequency.