期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
带非线性源项的双侧空间分数阶扩散方程的隐式中点方法 被引量:6
1
作者 胡冬冬 曹学年 蒋慧灵 《计算数学》 CSCD 北大核心 2019年第3期295-307,共13页
本文用隐式中点方法离散一阶时间偏导数,并用拟紧差分算子逼近Riemann-Liouville空间分数阶偏导数,构造了求解带非线性源项的空间分数阶扩散方程的数值格式.给出了数值方法的稳定性和收敛性分析.数值试验表明数值方法是有效的.
关键词 双侧空间分数阶扩散方程 隐式中点方法 拟紧差分算子 稳定性 收敛性
原文传递
Riesz空间分数阶扩散方程的快速预处理方法
2
作者 黄小青 张建华 《哈尔滨商业大学学报(自然科学版)》 CAS 2024年第6期702-709,共8页
空间分数阶微分方程的数值求解是科学与工程计算研究领域的热点问题.针对Crank-Nicolson格式和四阶有限中心差分离散Riesz空间分数阶扩散方程导出的非对称all-at-once线性方程组,构造了τ矩阵块α循环预处理子.理论分析证明预处理后的... 空间分数阶微分方程的数值求解是科学与工程计算研究领域的热点问题.针对Crank-Nicolson格式和四阶有限中心差分离散Riesz空间分数阶扩散方程导出的非对称all-at-once线性方程组,构造了τ矩阵块α循环预处理子.理论分析证明预处理后的系数矩阵可分解为单位矩阵与一个低秩矩阵和小范数矩阵的和.数值实验结果证实了τ矩阵块α循环预处理广义最小残差法求解非对称all-at-once线性方程组的有效性. 展开更多
关键词 Riesz空间分数扩散方程 all-at-once线性方程 CRANK-NICOLSON格式 有限中心差分法 τ预处理 广义最小残差法
下载PDF
双边空间分数阶反常扩散方程的加权有限差分解法
3
作者 马亮亮 《中北大学学报(自然科学版)》 CAS 北大核心 2014年第5期525-529,共5页
在一般空间分数阶反常扩散方程的基础上,研究了一类含有初边值条件的双边空间分数阶反常扩散方程的有限差分问题.利用能量估计方法验证了所提出的加权有限差分格式是条件稳定的.借助于数学归纳法证明了在相同条件下所提出的加权有限差... 在一般空间分数阶反常扩散方程的基础上,研究了一类含有初边值条件的双边空间分数阶反常扩散方程的有限差分问题.利用能量估计方法验证了所提出的加权有限差分格式是条件稳定的.借助于数学归纳法证明了在相同条件下所提出的加权有限差分格式是收敛的.最后,通过一个数值例子验证了所提出的加权有限差分格式是可靠和有效的. 展开更多
关键词 分数反常扩散方程 空间分数导数 加权差分格式 能量估计法 稳定性 收敛性
下载PDF
含有Riesz-Feller位势的双边空间分数阶Lévy-Feller扩散方程的加权有限差分格式
4
作者 马亮亮 刘冬兵 《井冈山大学学报(自然科学版)》 2014年第5期18-21,共4页
考虑了一类含有Riesz-Feller位势的两边空间分数阶Lévy-Feller扩散方程的差分问题。利用分数阶微分算子的等价性,提出了一种加权有限差分解法,并证明了所提出的差分格式是稳定和收敛的。最后通过一个数值例子说明了所提出的差分格... 考虑了一类含有Riesz-Feller位势的两边空间分数阶Lévy-Feller扩散方程的差分问题。利用分数阶微分算子的等价性,提出了一种加权有限差分解法,并证明了所提出的差分格式是稳定和收敛的。最后通过一个数值例子说明了所提出的差分格式是有效和可靠的。 展开更多
关键词 Lévy-Feller扩散方程 空间分数导数 稳定性 收敛性
下载PDF
空间分数阶扩散方程的超线性收敛离散格式 被引量:4
5
作者 章红梅 刘发旺 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期464-468,共5页
考虑了空间分数阶扩散方程的数值解,构造了一个隐式差分离散格式,证明了此格式是无条件稳定的,且关于空间步长是超线性收敛的.最后,给出一个数值例子说明本文的理论分析是正确的,所构造的离散格式是有效的.
关键词 空间分数扩散方程 CAPUTO导数 Riemann-Liouville分数导数 积分
下载PDF
一类n维空间Riesz分数阶扩散方程的解析解 被引量:4
6
作者 马亮亮 刘冬兵 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期506-509,共4页
文章讨论了n维空间Riesz分数阶扩散方程的解,用特征函数幂级数形式定义了n维分数阶拉普拉斯算子,并给出了分数阶拉普拉斯算子与Riesz分数阶导数之间的关系,最后用谱表示法导出了n维空间Riesz分数阶扩散方程在齐次和非齐次情况下,在有界... 文章讨论了n维空间Riesz分数阶扩散方程的解,用特征函数幂级数形式定义了n维分数阶拉普拉斯算子,并给出了分数阶拉普拉斯算子与Riesz分数阶导数之间的关系,最后用谱表示法导出了n维空间Riesz分数阶扩散方程在齐次和非齐次情况下,在有界区域上满足一定初边值条件的基本解。 展开更多
关键词 Riesz分数导数 空间分数扩散方程 Riemann-Liouville分数导数 解析解
下载PDF
两边空间-时间分数阶扩散方程的加权有限差分格式(英文) 被引量:4
7
作者 马维元 刘华 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期41-48,70,共9页
对于空间-时间分数阶扩散方程的初边值问题提出了一种加权差分格式.利用能量估计,得到了差分格式的稳定性.然后使用数学归纳法证明了在相同的条件下,所提出的的格式是收敛的.最后通过一个例子说明了所提出的格式是可靠的、有效的.
关键词 分数扩散方程 空间-时间分数导数 加权差分格式 收敛性 稳定性
下载PDF
空间分数阶扩散方程的隐式高精度方法 被引量:3
8
作者 蔡新 刘发旺 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第3期317-321,共5页
在有限区域内考虑具有初边值问题的Riesz空间分数阶扩散方程,传统扩散方程中的二阶空间导数由Riesz分数阶导数α(1<α≤2)代替就得到Riesz空间分数阶扩散方程.我们提出一个在时间和空间都具有二阶精度的隐式方法,这个方法基于古典的C... 在有限区域内考虑具有初边值问题的Riesz空间分数阶扩散方程,传统扩散方程中的二阶空间导数由Riesz分数阶导数α(1<α≤2)代替就得到Riesz空间分数阶扩散方程.我们提出一个在时间和空间都具有二阶精度的隐式方法,这个方法基于古典的Crank-Nicholson方法与空间外推方法,该隐式方法是无条件稳定和收敛的.最后给出一些数值例子来证实格式是高阶收敛的,此技巧可应用于解其它分数阶微分方程. 展开更多
关键词 空间分数扩散方程 隐式方法 精度 稳定性 收敛性
下载PDF
两边空间分数阶对流-扩散方程的一种加权显式有限差分方法 被引量:3
9
作者 马亮亮 刘冬兵 《四川师范大学学报(自然科学版)》 CAS 北大核心 2016年第1期76-82,共7页
考虑两边空间分数阶对流-扩散方程的初边值问题,基于Grünwald公式和移位Grünwald-Letnikov公式,提出一种加权显式有限差分解法.利用傅里叶变换和特征值法,得到差分格式的稳定性.然后使用最大模估计法证明在相同的条件下,所提... 考虑两边空间分数阶对流-扩散方程的初边值问题,基于Grünwald公式和移位Grünwald-Letnikov公式,提出一种加权显式有限差分解法.利用傅里叶变换和特征值法,得到差分格式的稳定性.然后使用最大模估计法证明在相同的条件下,所提出的差分格式是收敛的.最后通过数值例子说明所提出的差分格式是可靠和有效的,并对方程的数值解与精确解进行比较,验证了文中的理论结果. 展开更多
关键词 分数对流-扩散方程 空间分数导数 加权差分格式 收敛性 稳定性 有限差分法
下载PDF
Riesz空间分数阶对流扩散方程的一种计算有效求解方法 被引量:2
10
作者 沈淑君 刘发旺 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第1期20-24,共5页
Riesz空间分数阶对流扩散方程是从混沌动力系统导出的.继续Ilic,Liu等的工作,我们提出在有界区域内求解Riesz空间分数阶对流-扩散方程的一种新的计算有效方法.即基于这两个Riesz空间分数阶导数的矩阵表示.这个方法的创新在于这个算子的... Riesz空间分数阶对流扩散方程是从混沌动力系统导出的.继续Ilic,Liu等的工作,我们提出在有界区域内求解Riesz空间分数阶对流-扩散方程的一种新的计算有效方法.即基于这两个Riesz空间分数阶导数的矩阵表示.这个方法的创新在于这个算子的标准离散得到包含具有相同分数次幂的矩阵的一个常微分方程组,并利用计算有效的分数阶行方法求解.同时借助于分数阶导数的谱表示和拉普拉斯变换,导出这个Riesz空间分数阶对流扩散方程的解析解.最后给出了数值例子来证实数值方法的有效性. 展开更多
关键词 Riesz空间分数导数 矩阵转换技巧 拉普拉斯变换 对流一扩散方程 行方法
下载PDF
一类Riesz空间分数阶时滞扩散微分方程的隐-显差分格式 被引量:2
11
作者 杨水平 刘红良 《湘潭大学自然科学学报》 CAS 2018年第1期27-30,共4页
通过对一类含有非线性时滞项的Riesz分数阶扩散微分方程的线性项采用隐式差分格式离散,对含有时滞非线性项采用显式差分格式离散,构造了求解该问题的隐-显差分格式.并证明了方法是收敛和稳定的.最后还利用外推技巧提高了方法的收敛阶,... 通过对一类含有非线性时滞项的Riesz分数阶扩散微分方程的线性项采用隐式差分格式离散,对含有时滞非线性项采用显式差分格式离散,构造了求解该问题的隐-显差分格式.并证明了方法是收敛和稳定的.最后还利用外推技巧提高了方法的收敛阶,若干的数值结果也验证了本文的理论结果. 展开更多
关键词 含有非线性时滞项的Riesz空间分数扩散微分方程 隐-显差分格式 收敛性 稳定性 外推方法
下载PDF
时间-空间分数阶扩散方程 被引量:1
12
作者 朱波 韩宝燕 《江南大学学报(自然科学版)》 CAS 2010年第6期750-752,共3页
讨论了用分数阶Caputo算子c0Dvt和分数阶Riesz算子▽xμ分别替换扩散方程中对时间和空间变量的偏导数后得到的时间-空间分数阶扩散方程定解问题,利用积分变换(Fourier变换、Laplace变换)及其逆变换得到时间-空间分数阶扩散方程的Green函... 讨论了用分数阶Caputo算子c0Dvt和分数阶Riesz算子▽xμ分别替换扩散方程中对时间和空间变量的偏导数后得到的时间-空间分数阶扩散方程定解问题,利用积分变换(Fourier变换、Laplace变换)及其逆变换得到时间-空间分数阶扩散方程的Green函数,并用Green函数得到有源时间-空间分数阶扩散方程Cauchy问题的解。 展开更多
关键词 时间-空间分数扩散方程 FOURIER变换 LAPLACE变换 GREEN函数 Mittag-Leffler函数
下载PDF
一类二维空间Riesz分数阶扩散方程的解 被引量:3
13
作者 王学彬 《宁夏大学学报(自然科学版)》 CAS 北大核心 2011年第3期222-225,共4页
讨论一类二维空间Riesz分数阶扩散方程的解,分别给出齐次和非齐次情况下该类方程在有界区间上满足一定初边值条件的解析解.
关键词 Riesz分数导数 空间分数扩散方程 初边值条件
下载PDF
两边空间分数阶反常扩散方程的一种有限差分解法 被引量:1
14
作者 马亮亮 刘冬兵 《唐山学院学报》 2014年第6期11-13,共3页
针对两边空间分数阶反常扩散方程的初边值问题提出了一种隐式差分格式。利用Gerschgorin定理得到了差分格式的稳定性,然后利用Lax等价定理证明了在相同条件下差分格式是收敛的,最后通过一个数值例子说明了所提出的差分格式是可靠和有效的。
关键词 反常扩散方程 空间分数导数 隐式差分格式 稳定性 收敛性
下载PDF
空间—时间分数阶对流扩散方程的分析解及基本解的性质
15
作者 郑达艺 《福建教育学院学报》 2007年第10期103-106,共4页
本文考虑空间时间分数阶对流—扩散方程(即在一个标准对流—扩散方程中,用β(0<β≤1)阶导数代替时间一阶导数,用a(1<a≤2)阶导数代替空间二阶导数,用γ(0<γ≤1)阶导数代替空间二阶导数的分析解,通过Fourier变换,Laplace变换... 本文考虑空间时间分数阶对流—扩散方程(即在一个标准对流—扩散方程中,用β(0<β≤1)阶导数代替时间一阶导数,用a(1<a≤2)阶导数代替空间二阶导数,用γ(0<γ≤1)阶导数代替空间二阶导数的分析解,通过Fourier变换,Laplace变换以及其逆变换等方法求得方程的分析解,并对其基本解进行讨论。 展开更多
关键词 空间时间分数对流-扩散方程 FOURIER变换 LAPLACE变换
下载PDF
空间分数阶对流-扩散方程的有限差分法及误差分析 被引量:1
16
作者 丁志清 《五邑大学学报(自然科学版)》 CAS 2010年第4期53-58,共6页
针对一类分数阶对流扩散方程,给出了分数阶Cranck-Nicolson数值求值方法,并进行了收敛性分析和对空间方向的外推研究,给出了阐述理论分析结果的2个数值实验.
关键词 空间分数对流-扩散方程 Cranck-Nicolson方法 收敛性
下载PDF
再生核空间中时间分数阶扩散方程的数值解法
17
作者 王文艳 王伟 +3 位作者 唐德权 魏立珺 董风占 俎宪晶 《哈尔滨师范大学自然科学学报》 CAS 2013年第5期1-4,共4页
提出一种简单的求解时间分数阶扩散方程的新方法,数值结果表明该方法是有效的.
关键词 时间分数扩散方程 再生核空间 数值解法
下载PDF
非线性变阶空间-时间分数阶对流-扩散方程的全隐式有限差分格式 被引量:2
18
作者 马亮亮 谭千蓉 刘冬兵 《四川师范大学学报(自然科学版)》 CAS 北大核心 2018年第5期627-634,共8页
针对非线性变阶空间-时间分数阶对流-扩散方程的初边值问题,提出一种全隐式有限差分格式.首先,分别对Riemann-Liouville型变时间分数阶导数算子和Riemann-Liouville型变空间分数阶导数算子和广义Riesz分数阶导数算子进行离散化处理;然后... 针对非线性变阶空间-时间分数阶对流-扩散方程的初边值问题,提出一种全隐式有限差分格式.首先,分别对Riemann-Liouville型变时间分数阶导数算子和Riemann-Liouville型变空间分数阶导数算子和广义Riesz分数阶导数算子进行离散化处理;然后,通过离散的能量方法证明全隐式有限差分格式的稳定性和收敛性,并验证其收敛阶为O(τ+h);最后,通过数值算例检验该方法.试验结果表明:全隐式有限差分格式求解非线性变阶空间-时间分数阶对流-扩散方程初边值问题是可行和有效的. 展开更多
关键词 空间-时间分数对流-扩散方程 全隐式有限差分格式 收敛性 稳定性 能量方法
下载PDF
一种基于微分求积的空间分数阶扩散方程求解方法
19
作者 朱晓钢 聂玉峰 《计算力学学报》 EI CAS CSCD 北大核心 2020年第6期661-669,共9页
通过微分求积建立求解变系数空间分数阶扩散方程的一种有效直接数值方法。基于Reciprocal Multiquadric和Thin-Plate Spline径向基函数推导两种逼近分数阶导数的微分求积公式,将所考虑的模型问题转化成易求解的常微分方程组,并采用Crank... 通过微分求积建立求解变系数空间分数阶扩散方程的一种有效直接数值方法。基于Reciprocal Multiquadric和Thin-Plate Spline径向基函数推导两种逼近分数阶导数的微分求积公式,将所考虑的模型问题转化成易求解的常微分方程组,并采用Crank-Nicolson格式进行离散。给出5个数值算例,计算结果表明,只要径向基函数的形状参数选择恰当,本文方法在精度和效率上均优于一些现有算法。 展开更多
关键词 微分求积 径向基函数 空间分数扩散方程
下载PDF
空间分布阶时间分数阶扩散方程的有限体积法 被引量:1
20
作者 杨莹莹 李景 《理论数学》 2019年第3期351-361,共11页
本文利用有限体积法研究了空间分布阶时间分数阶扩散方程。首先,用中点求积法将空间分布阶项转化为多项空间分数阶项,利用有限体积法对多项空间分数阶项进行离散。而对于时间分数阶导数,我们采用有限差分法。其次,我们证明了迭代格式的... 本文利用有限体积法研究了空间分布阶时间分数阶扩散方程。首先,用中点求积法将空间分布阶项转化为多项空间分数阶项,利用有限体积法对多项空间分数阶项进行离散。而对于时间分数阶导数,我们采用有限差分法。其次,我们证明了迭代格式的无条件稳定性和收敛性。最后通过一个数值例子来证明算法的有效性。 展开更多
关键词 空间分布方程 时间分数扩散方程 有限体积法 稳定性和收敛性
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部