This paper investigates the effect of carried-envelope phase on transient process in a cascade-type atomic system, which is driven by two ultrashort laser pulses (probe and signal laser). It is found that the one- a...This paper investigates the effect of carried-envelope phase on transient process in a cascade-type atomic system, which is driven by two ultrashort laser pulses (probe and signal laser). It is found that the one- and two-photon processes corresponding to pathway |0〉→|1〉and |0〉→|1〉→|2〉 can be enhanced or ,suppressed by modulating the carried-envelope phases of probe laser pulse. Our numerical results also show that the transient populations of two excited states can be periodically affected by the carried-envelope phase of probe laser pulse. With certain time, the partial population transfer between two exited states can be realized just by adjusting the carried-envelope phase of probe laser pulse.展开更多
Monitoring telomerase activity with high sensitive and reliable is of great importance to cancer analysis. In this paper, we report a sensitive and facile method to detect telomerase activity using AIEgens mod- ified ...Monitoring telomerase activity with high sensitive and reliable is of great importance to cancer analysis. In this paper, we report a sensitive and facile method to detect telomerase activity using AIEgens mod- ified probe (TPE-Py-DNA) as a fluorescence reporter and exonuclease llI (Exo lIl) as a signal amplifier. With the aid of telomerase, repeat units (TrAGGG)n are extended from the end of template substrate oligonucleotides (TS primer) that form duplex DNAs with TPE-Py-DNA. Then, Exo llI catalyzes the diges- tion of duplex DNAs, liberating elongation product and releasing hydrophobic TPE-Py. The released hydrophobic TPE-Py aggregate together and produce a telomerase-activity-related fluorescence signal. The liberated product hybridizes with another TPE-Py-DNA probe, starting the second cycle. Finally, we obtain the target-to-signal amplification ratio of 1 :N2. This strategy exhibits good performance for detecting clinical urine samples (distinguishing 15 cancer patients' samples from 8 healthy ones) and checking intracellular telomerase activity (differentiating cell lines including HeLa, MDA-MB-231, MCF-7, A375, HLF and MRC-5 from the cells pretreated with telomerase-related drug), which shows its potential in clinical diagnosis as well as therapeutic monitoring of cancer.展开更多
文摘This paper investigates the effect of carried-envelope phase on transient process in a cascade-type atomic system, which is driven by two ultrashort laser pulses (probe and signal laser). It is found that the one- and two-photon processes corresponding to pathway |0〉→|1〉and |0〉→|1〉→|2〉 can be enhanced or ,suppressed by modulating the carried-envelope phases of probe laser pulse. Our numerical results also show that the transient populations of two excited states can be periodically affected by the carried-envelope phase of probe laser pulse. With certain time, the partial population transfer between two exited states can be realized just by adjusting the carried-envelope phase of probe laser pulse.
基金supported by the National Natural Science Foundation of China(21375042,21405054,21525523,21574048,and21404028)the National Basic Research Program of China(2015CB932600,2013CB933000,and 2016YFF0100800)+1 种基金the Special Fund for Strategic New Industry Development of Shenzhen,China(JCYJ20150616144425376)1000 Young Talent Program(to F.Xia)
文摘Monitoring telomerase activity with high sensitive and reliable is of great importance to cancer analysis. In this paper, we report a sensitive and facile method to detect telomerase activity using AIEgens mod- ified probe (TPE-Py-DNA) as a fluorescence reporter and exonuclease llI (Exo lIl) as a signal amplifier. With the aid of telomerase, repeat units (TrAGGG)n are extended from the end of template substrate oligonucleotides (TS primer) that form duplex DNAs with TPE-Py-DNA. Then, Exo llI catalyzes the diges- tion of duplex DNAs, liberating elongation product and releasing hydrophobic TPE-Py. The released hydrophobic TPE-Py aggregate together and produce a telomerase-activity-related fluorescence signal. The liberated product hybridizes with another TPE-Py-DNA probe, starting the second cycle. Finally, we obtain the target-to-signal amplification ratio of 1 :N2. This strategy exhibits good performance for detecting clinical urine samples (distinguishing 15 cancer patients' samples from 8 healthy ones) and checking intracellular telomerase activity (differentiating cell lines including HeLa, MDA-MB-231, MCF-7, A375, HLF and MRC-5 from the cells pretreated with telomerase-related drug), which shows its potential in clinical diagnosis as well as therapeutic monitoring of cancer.