针对局部方向数(Local Directional Number pattern,LDN)类方法的人脸识别通常仅利用梯度信息且信息提取不充分的问题,提出双偏差双空间局部方向模式(Double Variation and Double Space Local Directional Pattern,DVDSLDP)。该方法首...针对局部方向数(Local Directional Number pattern,LDN)类方法的人脸识别通常仅利用梯度信息且信息提取不充分的问题,提出双偏差双空间局部方向模式(Double Variation and Double Space Local Directional Pattern,DVDSLDP)。该方法首先通过像素采样扩大关联邻域信息,再利用边缘响应算子和局部前后向差分获得的相对偏差和绝对偏差以构成双偏差信息,充分挖掘局部梯度空间信息;然后与所提取像素的灰度空间特征级联融合,以获得双空间特征,再进行模式编码得到特征图;最后依据信息熵加权级联各子块直方图获得人脸特征向量,使用最近邻分类器完成分类。针对ORL、Yale、AR人脸库和相关典型方法的对比结果表明:利用双空间特征的融合,获得了轮廓更清晰、纹理更丰富的编码特征图,在ORL和Yale库上分别达到了99.50%、94.44%的识别率,尤其是在训练样本较少时性能提升明显;该方法针对AR库的表情、光照、遮挡A和遮挡B子集分别达到了99.67%、100%、99.33%和97.33%的识别率,明显高于其他方法,表现出良好的鲁棒性。展开更多
Aim To study a class of boundary value problem of hyperbolic partial functional differential equations with continuous deviating arguments. Methods An averaging technique was used. The multi dimensional problem was...Aim To study a class of boundary value problem of hyperbolic partial functional differential equations with continuous deviating arguments. Methods An averaging technique was used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Results and Conclusion The known results of oscillation of solutions for a class of boundary value problem of hyperbolic partial functional differential equations with discrete deviating arguments are generalized, and the oscillatory criteria of solutions for such equation with two kinds of boundary value conditions are obtained.展开更多
文摘针对局部方向数(Local Directional Number pattern,LDN)类方法的人脸识别通常仅利用梯度信息且信息提取不充分的问题,提出双偏差双空间局部方向模式(Double Variation and Double Space Local Directional Pattern,DVDSLDP)。该方法首先通过像素采样扩大关联邻域信息,再利用边缘响应算子和局部前后向差分获得的相对偏差和绝对偏差以构成双偏差信息,充分挖掘局部梯度空间信息;然后与所提取像素的灰度空间特征级联融合,以获得双空间特征,再进行模式编码得到特征图;最后依据信息熵加权级联各子块直方图获得人脸特征向量,使用最近邻分类器完成分类。针对ORL、Yale、AR人脸库和相关典型方法的对比结果表明:利用双空间特征的融合,获得了轮廓更清晰、纹理更丰富的编码特征图,在ORL和Yale库上分别达到了99.50%、94.44%的识别率,尤其是在训练样本较少时性能提升明显;该方法针对AR库的表情、光照、遮挡A和遮挡B子集分别达到了99.67%、100%、99.33%和97.33%的识别率,明显高于其他方法,表现出良好的鲁棒性。
文摘Aim To study a class of boundary value problem of hyperbolic partial functional differential equations with continuous deviating arguments. Methods An averaging technique was used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Results and Conclusion The known results of oscillation of solutions for a class of boundary value problem of hyperbolic partial functional differential equations with discrete deviating arguments are generalized, and the oscillatory criteria of solutions for such equation with two kinds of boundary value conditions are obtained.