We demonstrate the formation of ultraslow dark semiconductor double quantum well (SDQW) structure based optical solitons with a four-level scheme in an asymmetric on intersubband transitions by using only a low-inte...We demonstrate the formation of ultraslow dark semiconductor double quantum well (SDQW) structure based optical solitons with a four-level scheme in an asymmetric on intersubband transitions by using only a low-intensity pulsed laser radiation. With appropriate conditions we show numerically that the dark optical soliton can travel with a ultraslow group velocity Vg/c - -10^-3. Such a semiconductor system is much more practical than its atomic counterpart because of its flexible design and the controllable interference strength. This nonlinear optical process in the SDQW solid-state material may be used for the control technology of optical delay lines and optical buffers.展开更多
Optical bistability (0t3) and optical multi-stability (OM) of a four-level A-type atomic system with two fold lower levels inside a unidirectional ring cavity is investigated. The effect of quantum interference ar...Optical bistability (0t3) and optical multi-stability (OM) of a four-level A-type atomic system with two fold lower levels inside a unidirectional ring cavity is investigated. The effect of quantum interference arising from spontaneous emission and incoherent pumping on 013 and OM is discussed. It is found that the threshold of OB and OM can be controlled by quantum interference mechanisms. In addition intensity of coupling field and the rate of an incoherent pumping field on behavior of OB and OM are then discussed.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant Nos.10575040.90503010.10634060,and 10747133the National Basic Research Program of China under Grant No.2005CB724508
文摘We demonstrate the formation of ultraslow dark semiconductor double quantum well (SDQW) structure based optical solitons with a four-level scheme in an asymmetric on intersubband transitions by using only a low-intensity pulsed laser radiation. With appropriate conditions we show numerically that the dark optical soliton can travel with a ultraslow group velocity Vg/c - -10^-3. Such a semiconductor system is much more practical than its atomic counterpart because of its flexible design and the controllable interference strength. This nonlinear optical process in the SDQW solid-state material may be used for the control technology of optical delay lines and optical buffers.
文摘Optical bistability (0t3) and optical multi-stability (OM) of a four-level A-type atomic system with two fold lower levels inside a unidirectional ring cavity is investigated. The effect of quantum interference arising from spontaneous emission and incoherent pumping on 013 and OM is discussed. It is found that the threshold of OB and OM can be controlled by quantum interference mechanisms. In addition intensity of coupling field and the rate of an incoherent pumping field on behavior of OB and OM are then discussed.