期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
双剪型分阶段屈服阻尼器的设计与分析
1
作者 杨明飞 杨超 陈宜网 《重庆科技学院学报(自然科学版)》 CAS 2022年第2期99-105,共7页
为了增强金属屈服阻尼器的耗能能力,设计了一种U型、X型软钢相结合的双剪型分阶段屈服阻尼器。首先,调整U型软钢的弧半径、厚度,X型软钢的高度、厚度,以及二者的屈服强度,以达到分阶段耗能的目的。然后,针对阻尼器进行数值建模,分析其... 为了增强金属屈服阻尼器的耗能能力,设计了一种U型、X型软钢相结合的双剪型分阶段屈服阻尼器。首先,调整U型软钢的弧半径、厚度,X型软钢的高度、厚度,以及二者的屈服强度,以达到分阶段耗能的目的。然后,针对阻尼器进行数值建模,分析其不同屈服阶段下的滞回曲线。在4.5 mm的位移幅值下,阻尼器的荷载-位移关系曲线呈双折线形;在30 mm位移幅值下,阻尼器的荷载-位移关系曲线呈三折线形。最后,计算出阻尼器在不同加载位移幅值下的等效黏滞阻尼系数。通过U型和X型软钢的合理组合,可以达到分阶段屈服的目的。在小位移幅值工况下,U型软钢片首先发生屈服,起到耗能的作用;在大位移幅值工况下,U型和X型软钢片能够同时进入屈服耗能阶段,使阻尼器的耗能能力显著增强。 展开更多
关键词 双剪型 分阶段屈服 金属阻尼器 滞回曲线 等效黏滞阻尼系数
下载PDF
Molecular kinetic theory of boundary slip on textured surfaces by molecular dynamics simulations 被引量:4
2
作者 WANG LiYa WANG FengChao +1 位作者 YANG FuQian WU HengAn 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2014年第11期2152-2160,共9页
A theoretical model extended from the Frenkel-Eyring molecular kinetic theory(MKT)was applied to describe the boundary slip on textured surfaces.The concept of the equivalent depth of potential well was adopted to cha... A theoretical model extended from the Frenkel-Eyring molecular kinetic theory(MKT)was applied to describe the boundary slip on textured surfaces.The concept of the equivalent depth of potential well was adopted to characterize the solid-liquid interactions on the textured surfaces.The slip behaviors on both chemically and topographically textured surfaces were investigated using molecular dynamics(MD)simulations.The extended MKT slip model is validated by our MD simulations under various situations,by constructing different complex surfaces and varying the surface wettability as well as the shear stress exerted on the liquid.This slip model can provide more comprehensive understanding of the liquid flow on atomic scale by considering the influence of the solid-liquid interactions and the applied shear stress on the nano-flow.Moreover,the slip velocity shear-rate dependence can be predicted using this slip model,since the nonlinear increase of the slip velocity under high shear stress can be approximated by a hyperbolic sine function. 展开更多
关键词 constructing validated chemically zigzag considering hyperbolic fitting rectangular fitted Frenkel
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部