The extraction kinetics of Ce(Ⅳ) and Ce(Ⅳ)-F^- mixture systems from sulfuric solutions to n-heptane solution containing Bif-ILE[A336][P204]([trialkylmethylammonium][di-2-ethylhewanxylphosphinate]) with a const...The extraction kinetics of Ce(Ⅳ) and Ce(Ⅳ)-F^- mixture systems from sulfuric solutions to n-heptane solution containing Bif-ILE[A336][P204]([trialkylmethylammonium][di-2-ethylhewanxylphosphinate]) with a constant interfacial area cell with laminar flow were studied,just to elucidate the extraction mechanism and the mass transfer models.The data were analyzed in terms of pseudo-first-order constants.The effects of stirring speed,specific interfacial area and temperature on the extraction rate in both systems were discussed,suggesting that the extractions were mixed bulk phases-interfacial control process.Supported by the experimental data,the corresponding rate equations for Ce(Ⅳ) extraction system and Ce(Ⅳ)-F^- mixture extraction system were obtained.The experimental results indicated the rate-controlling step.The kinetics model was deduced from the rate-controlling step and consistent with the rate equation.展开更多
Femtosecond pulsed lasers have been widely used over the past decades due to their capability to fabricate precise patterns at the micro-and nano-lengths scales. A key issue for efficient material processing is the de...Femtosecond pulsed lasers have been widely used over the past decades due to their capability to fabricate precise patterns at the micro-and nano-lengths scales. A key issue for efficient material processing is the determination of the laser parameters used in the experimental set ups. Despite a systematic investigation that has been performed to highlight the impact of every parameter independently, little attention has been drawn on the role of the substrate material on which the irradiated solid is placed. In this work, the influence of the substrate is emphasised for films of various thicknesses, which demonstrates that both the optical and thermophysical properties of the substrate affect the thermal fingerprint on the irradiated film while the impact is manifested to be higher at smaller film sizes. Two representative materials, silicon and fused silica, have been selected as typical substrates for thin films(gold and nickel) of different optical and thermophysical behaviour and the thermal response and damage thresholds are evaluated for the irradiated solids. The pronounced influence of the substrate is aimed to pave the way for new and more optimised designs of laserbased fabrication set ups and processing schemes.展开更多
A moisture-content based constitutive model was proposed based on the hyperbolic model as an attempt to move towards the implementation of unsaturated soil mechanics into routine geotechnical engineering practice. The...A moisture-content based constitutive model was proposed based on the hyperbolic model as an attempt to move towards the implementation of unsaturated soil mechanics into routine geotechnical engineering practice. The stress-strain behavior of in-situ soil at a depth of 5 m was investigated by conducting undrained triaxial compression tests using the remolded soil samples. The test results show that the stress-strain relationship of unsaturated cohesive soil is still hyperbolic. The values of parameters a and b given in the model decrease with increasing the confining pressure for soil samples with the same moisture content and increase with increasing the moisture content for soil samples under the same confining pressure. The relationships between parameters a, b and moisture content were studied for confining pressures of 100, 150, 200 and 250 kPa. The comparison between the measured and predicted stress-strain curves for an additional group of soil samples, having a moisture content of 25.4%, shows that the proposed moisture content-dependent hyperbolic model provides a good prediction of stress-strain behavior of unsaturated cohesive soil.展开更多
In order to explain the oscillation heat transfer dynamics of closed loop oscillation heat pipe (CLOHP) with two liquid slugs,analysis on the forces and heat transfer process of the partial gas-liquid phase system inv...In order to explain the oscillation heat transfer dynamics of closed loop oscillation heat pipe (CLOHP) with two liquid slugs,analysis on the forces and heat transfer process of the partial gas-liquid phase system involving multiple parameters was carried out,and a new type oscillation heat transfer dynamic model of the CLOHP was set up based on conservation laws of mass,momentum and energy.Application results indicate that its oscillation heat transfer dynamics features depend largely on the filling rate,pipe diameter and difference in temperature.Besides,oscillation intensity and transfer performance can be improved to a large extent by increasing the temperature difference properly and enlarging the pipe diameter within a certain range under a certain filling rate.展开更多
A micromechanical model of double-walled carbon nanotube (DWCNT) pullout from a composite matrix is presented with the interfacial residual stress and van der Waals (vdW) forces taken into consideration.The interfacia...A micromechanical model of double-walled carbon nanotube (DWCNT) pullout from a composite matrix is presented with the interfacial residual stress and van der Waals (vdW) forces taken into consideration.The interfacial residual stress induced by thermal expansion coefficient (TEC) mismatch is introduced via thermo-elastic constitutive relations.The influence of vdW interactions between two layers of DWCNT on the interfacial stress distributions of DWCNT and matrix is analyzed.The analytical expressions of interfacial shear stress and the axial stresses of DWCNT and matrix are derived,respectively.Furthermore,the influences of temperature change,interfacial friction coefficient,DWCNT aspect ratio,DWCNT volume fraction and the relative modulus between DWCNT and matrix are illustrated and discussed.展开更多
基金Project (2012CBA01202) supported by the National Basic Research Program of ChinaProject (51174184) supported by the National Natural Science Foundation of China+2 种基金Project (KGZD-EW-201-1) supported by the Key Research Program of the Chinese Academy of SciencesProject (BK2013030) supported by Science and Technology Plan of Nantong City,ChinaProject (RERU2014016) supported by Open Subject of Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,China
文摘The extraction kinetics of Ce(Ⅳ) and Ce(Ⅳ)-F^- mixture systems from sulfuric solutions to n-heptane solution containing Bif-ILE[A336][P204]([trialkylmethylammonium][di-2-ethylhewanxylphosphinate]) with a constant interfacial area cell with laminar flow were studied,just to elucidate the extraction mechanism and the mass transfer models.The data were analyzed in terms of pseudo-first-order constants.The effects of stirring speed,specific interfacial area and temperature on the extraction rate in both systems were discussed,suggesting that the extractions were mixed bulk phases-interfacial control process.Supported by the experimental data,the corresponding rate equations for Ce(Ⅳ) extraction system and Ce(Ⅳ)-F^- mixture extraction system were obtained.The experimental results indicated the rate-controlling step.The kinetics model was deduced from the rate-controlling step and consistent with the rate equation.
基金Projects(862016(Bio Combs4Nanofibres)HELLAS-CH+1 种基金MIS 5002735) funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” and co-financed by Greece and the EU (European Regional Development Fund)Project (COST Action TUMIEE) supported by COST-European Cooperation in Science and Technology。
文摘Femtosecond pulsed lasers have been widely used over the past decades due to their capability to fabricate precise patterns at the micro-and nano-lengths scales. A key issue for efficient material processing is the determination of the laser parameters used in the experimental set ups. Despite a systematic investigation that has been performed to highlight the impact of every parameter independently, little attention has been drawn on the role of the substrate material on which the irradiated solid is placed. In this work, the influence of the substrate is emphasised for films of various thicknesses, which demonstrates that both the optical and thermophysical properties of the substrate affect the thermal fingerprint on the irradiated film while the impact is manifested to be higher at smaller film sizes. Two representative materials, silicon and fused silica, have been selected as typical substrates for thin films(gold and nickel) of different optical and thermophysical behaviour and the thermal response and damage thresholds are evaluated for the irradiated solids. The pronounced influence of the substrate is aimed to pave the way for new and more optimised designs of laserbased fabrication set ups and processing schemes.
基金Project(50608038) supported by the National Natural Science Foundation of China
文摘A moisture-content based constitutive model was proposed based on the hyperbolic model as an attempt to move towards the implementation of unsaturated soil mechanics into routine geotechnical engineering practice. The stress-strain behavior of in-situ soil at a depth of 5 m was investigated by conducting undrained triaxial compression tests using the remolded soil samples. The test results show that the stress-strain relationship of unsaturated cohesive soil is still hyperbolic. The values of parameters a and b given in the model decrease with increasing the confining pressure for soil samples with the same moisture content and increase with increasing the moisture content for soil samples under the same confining pressure. The relationships between parameters a, b and moisture content were studied for confining pressures of 100, 150, 200 and 250 kPa. The comparison between the measured and predicted stress-strain curves for an additional group of soil samples, having a moisture content of 25.4%, shows that the proposed moisture content-dependent hyperbolic model provides a good prediction of stress-strain behavior of unsaturated cohesive soil.
基金Project(531107040300)supported by the Fundamental Research Funds for the Central Universities in ChinaProject(51176045)supported by the National Natural Science Foundation of China
文摘In order to explain the oscillation heat transfer dynamics of closed loop oscillation heat pipe (CLOHP) with two liquid slugs,analysis on the forces and heat transfer process of the partial gas-liquid phase system involving multiple parameters was carried out,and a new type oscillation heat transfer dynamic model of the CLOHP was set up based on conservation laws of mass,momentum and energy.Application results indicate that its oscillation heat transfer dynamics features depend largely on the filling rate,pipe diameter and difference in temperature.Besides,oscillation intensity and transfer performance can be improved to a large extent by increasing the temperature difference properly and enlarging the pipe diameter within a certain range under a certain filling rate.
基金supported by the National Natural Science Foundation of China (Grant no. 10802057 and 51075298)the Key Program of National Natural Science Foundation of China (Grant no. 10732080)the National Basic Research Program of China (973 Program,Grant no.2012CB937500)
文摘A micromechanical model of double-walled carbon nanotube (DWCNT) pullout from a composite matrix is presented with the interfacial residual stress and van der Waals (vdW) forces taken into consideration.The interfacial residual stress induced by thermal expansion coefficient (TEC) mismatch is introduced via thermo-elastic constitutive relations.The influence of vdW interactions between two layers of DWCNT on the interfacial stress distributions of DWCNT and matrix is analyzed.The analytical expressions of interfacial shear stress and the axial stresses of DWCNT and matrix are derived,respectively.Furthermore,the influences of temperature change,interfacial friction coefficient,DWCNT aspect ratio,DWCNT volume fraction and the relative modulus between DWCNT and matrix are illustrated and discussed.