超高镍层状材料LiNi_(0.92)Co_(0.04)Mn_(0.04)O_(2)(简称NCM92)因其具有较高的能量密度和价格优势,已成为锂离子电池重要的正极材料来源之一。然而,由于该材料的界面不稳定和不可逆相变,商业应用面临特别是在高截止电压下快速的容量衰...超高镍层状材料LiNi_(0.92)Co_(0.04)Mn_(0.04)O_(2)(简称NCM92)因其具有较高的能量密度和价格优势,已成为锂离子电池重要的正极材料来源之一。然而,由于该材料的界面不稳定和不可逆相变,商业应用面临特别是在高截止电压下快速的容量衰落和严重的结构退化的问题。本研究设计了一种ZrO_(2)/Li_(2)ZrO_(3)双包覆层改性超高镍单晶正极材料,同时材料表面均匀掺杂有Zr元素,通过双包覆层协同策略显著增强了正极的高压性能和结构稳定性。研究结果表明,ZrO_(2)/Li_(2)ZrO_(3)双包覆层可以有效缓解超高镍正极材料H2-H3相变的不可逆性,提高力学稳定性和界面稳定性,同时表面Zr掺杂进入晶体结构中的TM层与Li位抑制Li/Ni混排并扩宽了晶格间距,ZrO_(2)/Li_(2)ZrO_(3)双包覆层与Zr掺杂改性的材料(NCM92-Zr)展现出优异的电化学性能,在0.5 C(200 mA·g^(-1))电流密度下,2.75~4.4 V电压范围内循环150圈后仍有155.2 mA h g^(-1)的放电比容量,容量保持率高达75.5%。此研究为在高截止电压下超高镍正极的复杂机制和改进的结构稳定性提供了新的思路。展开更多
The V2O3-C dual-layer coated LiFePO4 cathode materials with excellent rate capability and cycling stability were prepared by carbothermic reduction of V2O5. X-ray powder diffraction, elemental analyzer, high resolutio...The V2O3-C dual-layer coated LiFePO4 cathode materials with excellent rate capability and cycling stability were prepared by carbothermic reduction of V2O5. X-ray powder diffraction, elemental analyzer, high resolution transmission electron microscopy and Raman spectra revealed that the V2O3 phase co-existed with carbon in the coating layer of LiFePO4 particles and the carbon content reduced without graphitization degree changing after the carbothermic reduction of V205. The electrochemical measurement results indicated that small amounts of V203 improved rate capability and cycling stability at elevated temperature of LiFePO4/C cathode materials. The V203-C dual-layer coated LiFePO4 composite with lwt% vanadium oxide delivered an initial specific capacity of 167 mAh/g at 0.2 C and 129 mAh/g at 5 C as well as excellent cycling stability. Even at elevated temperature of 55 ℃, the specific capacity of 151 mAh/g was achieved at 1 C without capacity fading after 100 cycles.展开更多
文摘超高镍层状材料LiNi_(0.92)Co_(0.04)Mn_(0.04)O_(2)(简称NCM92)因其具有较高的能量密度和价格优势,已成为锂离子电池重要的正极材料来源之一。然而,由于该材料的界面不稳定和不可逆相变,商业应用面临特别是在高截止电压下快速的容量衰落和严重的结构退化的问题。本研究设计了一种ZrO_(2)/Li_(2)ZrO_(3)双包覆层改性超高镍单晶正极材料,同时材料表面均匀掺杂有Zr元素,通过双包覆层协同策略显著增强了正极的高压性能和结构稳定性。研究结果表明,ZrO_(2)/Li_(2)ZrO_(3)双包覆层可以有效缓解超高镍正极材料H2-H3相变的不可逆性,提高力学稳定性和界面稳定性,同时表面Zr掺杂进入晶体结构中的TM层与Li位抑制Li/Ni混排并扩宽了晶格间距,ZrO_(2)/Li_(2)ZrO_(3)双包覆层与Zr掺杂改性的材料(NCM92-Zr)展现出优异的电化学性能,在0.5 C(200 mA·g^(-1))电流密度下,2.75~4.4 V电压范围内循环150圈后仍有155.2 mA h g^(-1)的放电比容量,容量保持率高达75.5%。此研究为在高截止电压下超高镍正极的复杂机制和改进的结构稳定性提供了新的思路。
基金This work was supported by the National Natural Science Foundation of China (No.21006033 and No.51372060) and the Fundamental Research fUnds for the Central Universities (No.2013HGCH0002).
文摘The V2O3-C dual-layer coated LiFePO4 cathode materials with excellent rate capability and cycling stability were prepared by carbothermic reduction of V2O5. X-ray powder diffraction, elemental analyzer, high resolution transmission electron microscopy and Raman spectra revealed that the V2O3 phase co-existed with carbon in the coating layer of LiFePO4 particles and the carbon content reduced without graphitization degree changing after the carbothermic reduction of V205. The electrochemical measurement results indicated that small amounts of V203 improved rate capability and cycling stability at elevated temperature of LiFePO4/C cathode materials. The V203-C dual-layer coated LiFePO4 composite with lwt% vanadium oxide delivered an initial specific capacity of 167 mAh/g at 0.2 C and 129 mAh/g at 5 C as well as excellent cycling stability. Even at elevated temperature of 55 ℃, the specific capacity of 151 mAh/g was achieved at 1 C without capacity fading after 100 cycles.