Photocatalytic H2 production from water splitting is an effective method to solve energy crisis and environmental pollution simultaneously.Herein,carbon@CdS composite hollow spheres(C@CdS-HS)are fabricated via a facil...Photocatalytic H2 production from water splitting is an effective method to solve energy crisis and environmental pollution simultaneously.Herein,carbon@CdS composite hollow spheres(C@CdS-HS)are fabricated via a facile hydrothermal method using porous carbon hollow spheres(C-HS)as the template.The C@CdS-HS shows an excellent photocatalytic H2-generation rate of 20.9 mmol h^(−1) g^(−1)(apparent quantum efficiency of 15.3%at 420 nm),with 1.0 wt%Pt as a cocatalyst under simulated sunlight irradiation;this rate is 69.7,13.9,and 3.9 times higher than that obtained with pure CdS hollow spheres(CdS-HS),C@CdS-HS,and CdS-HS/Pt,respectively.The enhanced photocatalytic H_(2)-evolution activity of C@CdS-HS/Pt is due to the synergistic effect of C and Pt as the bi-cocatalyst.The C-HS serves not only as an active site provider but also as an electron transporter and reservoir.Moreover,C-HS has a strong photothermal effect that is induced by near infrared light,which kinetically accelerates the H_(2)-production reaction.Additionally,the underlying charge transfer pathway and process from CdS to C−HS is revealed.This work highlights the potential application of C-HS-based nanocomposites in solar-to-chemical energy conversion.展开更多
Tandem catalysis for the hydrogenation rearrangement of furfural(FA)provides an attractive solution for manufacturing cyclopentanone(CPO)from renewable biomass resources.The Cu-Ni/Al-MCM-41 catalyst was synthesized an...Tandem catalysis for the hydrogenation rearrangement of furfural(FA)provides an attractive solution for manufacturing cyclopentanone(CPO)from renewable biomass resources.The Cu-Ni/Al-MCM-41 catalyst was synthesized and afforded excellent catalytic performance with 99.0%conversion and 97.7%selectivity to CPO in a near-neutral solution under 2.0 MPa H2 at 160℃ for 5 h,much higher than those on other molecular sieve supports including MCM-41,SBA-15,HY,and ZSM-5.A small amount of Al highly dispersed in MCM-41 plays an anchoring role and ensures the formation of highly dispersed CuNi bimetallic nanoparticles(NPs).The remarkably improved catalytic performance may be attributed to the bimetallic synergistic and charge transfer effects.In addition,the initial FA concentration and the aqueous system pH required precise control to minimize polymerization and achieve high selectivity of CPO.Fourier transform infrared spectroscopy and mass spectra results indicated that polymerization was sensitive to pH values.Under acidic conditions,FA and intermediate furfuryl alcohol polymerize,while the intermediate 4-hydroxy-2-cyclopentenone mainly polymerizes under alkaline conditions,blocking the cascade of multiple reactions.Therefore,near-neutral conditions are most suitable for minimizing the impact of polymerization.This study provides a useful solution for the current universal problems of polymerization side reactions and low carbon balance for biomass conversion.展开更多
Supported Au catalysts have been reported to exhibit high ethylene selectivity in the hydrogenation of acetylene,but the conversion is relatively low.Adding a second metal to Au has proven to be a promising approach t...Supported Au catalysts have been reported to exhibit high ethylene selectivity in the hydrogenation of acetylene,but the conversion is relatively low.Adding a second metal to Au has proven to be a promising approach to enhance its catalytic performance in acetylene hydrogenation.In this work,SiO2‐supported Au‐Ni bimetallic catalysts were synthesized and investigated in the selective hydrogenation of acetylene.The Au‐Ni bimetallic catalysts exhibited much higher catalytic performance than that of the corresponding monometallic Au or Ni catalysts.By tuning the reduction temperature and/or Ni loading,we obtained an Au‐Ni/SiO2catalyst with optimal performance.The results of transmission electron microscopy imaging revealed that the Au‐Ni bimetallic particles were highly dispersed on the SiO2support.Meanwhile,analysis of the bimetallic catalyst by energy‐dispersive X‐ray spectroscopy,high‐resolution transmission electron microscopy,and in situ diffuse reflectance infrared Fourier transform spectroscopy demonstrated the formation of Au‐Ni alloy,which contributed to the synergistic effect between Au and Ni in the hydrogenation of acetylene.展开更多
The exploration of efficient electrocatalysts for the reduction of CO2 to C2H4 is of significant importance but is also a challenging subject.Cu-based bimetallic catalysts are extremely promising for efficient CO2 red...The exploration of efficient electrocatalysts for the reduction of CO2 to C2H4 is of significant importance but is also a challenging subject.Cu-based bimetallic catalysts are extremely promising for efficient CO2 reduction.In this work,we synthesize a series of porous bimetallic Cu–Sb alloys with different compositions for the catalytic reduction of CO2 to C2H4.It is demonstrated that the alloy catalysts are much more efficient than the pure Cu catalyst.The performance of the alloy catalysts depended strongly on the composition.Further,the alloy with a Cu:Sb ratio of 10:1 yielded the best results;it exhibited a high C2H4 Faradaic efficiency of 49.7%and a high current density of 28.5 mA cm?2 at?1.19 V vs.a reversible hydrogen electrode(RHE)in 0.1 M KCl solution.To the best of our knowledge,the electrocatalytic reduction of CO2 to C2H4 using Cu–Sb alloys as catalysts has not been reported.The excellent performance of the porous alloy catalyst is attributed to its favorable electronic configuration,large surface area,high CO2 adsorption rate,and fast charge transfer rate.展开更多
There are two theories regarding the origin of the remarkable synergistic effect observed in Au‐Ag bimetallic catalysts when applied to various oxidative reactions. One is based on the importance of the contact inter...There are two theories regarding the origin of the remarkable synergistic effect observed in Au‐Ag bimetallic catalysts when applied to various oxidative reactions. One is based on the importance of the contact interfaces between AgOx regions and the surface of the bulk Au as active working sites, while the other holds that charge transfer from Ag to Au in a surface Au‐Ag alloy causes the catalytic activity. One key point in examining these theories and determining the origin of the synergy in‐volves determining whether or not Ag exists as an oxide or as a metallic alloy on the Au surface. To confirm that enhanced activity results from contact between Ag2O and Au nanoparticles (NPs), a comparative study of catalytic CO oxidation over Au/Ag2O and Ag2O was performed in the present work, using a closed recirculation reaction system. A reaction mixture consisting of a stoichiometric composition of CO and O2 (CO/O2=2/1) was supplied to both catalysts and the resulting pressure decrease rates were tracked, from which the amounts of gas consumed as well as the quantity of CO2 produced were determined. The steady state reactions of both Au/Ag2O and Ag2O did not lead to any meaningful difference in the rate of pressure decrease during the oxidation. The pressure decrease over both catalysts was attributed to the reduction of surface lattice O on Ag2O by CO. The results obtained for Au/Ag2O are in good agreement with previous data resulting from the use of Ag‐contaminated Au powder (Ag/Au‐b) having an oxidized surfaces. This finding suggests that the perimeters between AgOx zones and the bulk Au surface may not function as active sites during CO oxidation. A review of previous results obtained with Ag/Au‐b specimens having so‐called steady state surfaces indicates that AgOx species in such materials are reduced to the 0 state to form a Ag‐Au alloy that provides the active sites.展开更多
Tetracyclic coumarins are a class of important compounds with diverse and superior pharmacolog‐ical activities.However,a direct stereoselective method from simple and readily‐made coumarins derivatives remains chall...Tetracyclic coumarins are a class of important compounds with diverse and superior pharmacolog‐ical activities.However,a direct stereoselective method from simple and readily‐made coumarins derivatives remains challenging due to the inertness of coumarins as dienophiles.Herein,we de‐velop a decarboxylative asymmetric[4+2]cycloaddition of 3‐cyanocoumarins with vinyl benzoxa‐zinones,affording the coumarin‐derived condensed rings bearing three continuous stereocenters in high yields with excellent diastereoselectivities(>20/1 d.r.)and enantioselectivities(up to 99%ee).This direct enantioselective reaction was achieved by a Pd(0)/Cu(I)bimetallic catalytic system.The mechanism studies indicated that the synergistic activation effect,in which chiral Cu(I)as an availa‐ble Lewis acid catalyst activates 3‐cyanocoumarin and chiral Pd(0)complex activates benzoxazi‐none by the formation ofπ‐allyl‐palladium intermediate,plays an important role on the stereoselec‐tive control.The current work provides a new activation modes of Cu catalyst in the Pd/Cu bimetal‐lic catalytic system.展开更多
文摘Photocatalytic H2 production from water splitting is an effective method to solve energy crisis and environmental pollution simultaneously.Herein,carbon@CdS composite hollow spheres(C@CdS-HS)are fabricated via a facile hydrothermal method using porous carbon hollow spheres(C-HS)as the template.The C@CdS-HS shows an excellent photocatalytic H2-generation rate of 20.9 mmol h^(−1) g^(−1)(apparent quantum efficiency of 15.3%at 420 nm),with 1.0 wt%Pt as a cocatalyst under simulated sunlight irradiation;this rate is 69.7,13.9,and 3.9 times higher than that obtained with pure CdS hollow spheres(CdS-HS),C@CdS-HS,and CdS-HS/Pt,respectively.The enhanced photocatalytic H_(2)-evolution activity of C@CdS-HS/Pt is due to the synergistic effect of C and Pt as the bi-cocatalyst.The C-HS serves not only as an active site provider but also as an electron transporter and reservoir.Moreover,C-HS has a strong photothermal effect that is induced by near infrared light,which kinetically accelerates the H_(2)-production reaction.Additionally,the underlying charge transfer pathway and process from CdS to C−HS is revealed.This work highlights the potential application of C-HS-based nanocomposites in solar-to-chemical energy conversion.
文摘Tandem catalysis for the hydrogenation rearrangement of furfural(FA)provides an attractive solution for manufacturing cyclopentanone(CPO)from renewable biomass resources.The Cu-Ni/Al-MCM-41 catalyst was synthesized and afforded excellent catalytic performance with 99.0%conversion and 97.7%selectivity to CPO in a near-neutral solution under 2.0 MPa H2 at 160℃ for 5 h,much higher than those on other molecular sieve supports including MCM-41,SBA-15,HY,and ZSM-5.A small amount of Al highly dispersed in MCM-41 plays an anchoring role and ensures the formation of highly dispersed CuNi bimetallic nanoparticles(NPs).The remarkably improved catalytic performance may be attributed to the bimetallic synergistic and charge transfer effects.In addition,the initial FA concentration and the aqueous system pH required precise control to minimize polymerization and achieve high selectivity of CPO.Fourier transform infrared spectroscopy and mass spectra results indicated that polymerization was sensitive to pH values.Under acidic conditions,FA and intermediate furfuryl alcohol polymerize,while the intermediate 4-hydroxy-2-cyclopentenone mainly polymerizes under alkaline conditions,blocking the cascade of multiple reactions.Therefore,near-neutral conditions are most suitable for minimizing the impact of polymerization.This study provides a useful solution for the current universal problems of polymerization side reactions and low carbon balance for biomass conversion.
基金supported by the National Natural Science Foundation of China (21303194,21476227,21522608,21573232,21690084)Youth Innovation Promotion Association of the Chinese Academy of Sciences (2014163)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB17020100)the National Key Projects for Fundamental Research and Development of China (2016YFA0202801)the Department of Science and Technology of Liaoning Province (2015020086-101)~~
文摘Supported Au catalysts have been reported to exhibit high ethylene selectivity in the hydrogenation of acetylene,but the conversion is relatively low.Adding a second metal to Au has proven to be a promising approach to enhance its catalytic performance in acetylene hydrogenation.In this work,SiO2‐supported Au‐Ni bimetallic catalysts were synthesized and investigated in the selective hydrogenation of acetylene.The Au‐Ni bimetallic catalysts exhibited much higher catalytic performance than that of the corresponding monometallic Au or Ni catalysts.By tuning the reduction temperature and/or Ni loading,we obtained an Au‐Ni/SiO2catalyst with optimal performance.The results of transmission electron microscopy imaging revealed that the Au‐Ni bimetallic particles were highly dispersed on the SiO2support.Meanwhile,analysis of the bimetallic catalyst by energy‐dispersive X‐ray spectroscopy,high‐resolution transmission electron microscopy,and in situ diffuse reflectance infrared Fourier transform spectroscopy demonstrated the formation of Au‐Ni alloy,which contributed to the synergistic effect between Au and Ni in the hydrogenation of acetylene.
文摘The exploration of efficient electrocatalysts for the reduction of CO2 to C2H4 is of significant importance but is also a challenging subject.Cu-based bimetallic catalysts are extremely promising for efficient CO2 reduction.In this work,we synthesize a series of porous bimetallic Cu–Sb alloys with different compositions for the catalytic reduction of CO2 to C2H4.It is demonstrated that the alloy catalysts are much more efficient than the pure Cu catalyst.The performance of the alloy catalysts depended strongly on the composition.Further,the alloy with a Cu:Sb ratio of 10:1 yielded the best results;it exhibited a high C2H4 Faradaic efficiency of 49.7%and a high current density of 28.5 mA cm?2 at?1.19 V vs.a reversible hydrogen electrode(RHE)in 0.1 M KCl solution.To the best of our knowledge,the electrocatalytic reduction of CO2 to C2H4 using Cu–Sb alloys as catalysts has not been reported.The excellent performance of the porous alloy catalyst is attributed to its favorable electronic configuration,large surface area,high CO2 adsorption rate,and fast charge transfer rate.
基金supported by CREST project(Catalyst Design of Gold Clusters through Junction Effect with Metal oxides,Carbons,and Polymers)sponsored by Japan Science and Technology Agency(JST)~~
文摘There are two theories regarding the origin of the remarkable synergistic effect observed in Au‐Ag bimetallic catalysts when applied to various oxidative reactions. One is based on the importance of the contact interfaces between AgOx regions and the surface of the bulk Au as active working sites, while the other holds that charge transfer from Ag to Au in a surface Au‐Ag alloy causes the catalytic activity. One key point in examining these theories and determining the origin of the synergy in‐volves determining whether or not Ag exists as an oxide or as a metallic alloy on the Au surface. To confirm that enhanced activity results from contact between Ag2O and Au nanoparticles (NPs), a comparative study of catalytic CO oxidation over Au/Ag2O and Ag2O was performed in the present work, using a closed recirculation reaction system. A reaction mixture consisting of a stoichiometric composition of CO and O2 (CO/O2=2/1) was supplied to both catalysts and the resulting pressure decrease rates were tracked, from which the amounts of gas consumed as well as the quantity of CO2 produced were determined. The steady state reactions of both Au/Ag2O and Ag2O did not lead to any meaningful difference in the rate of pressure decrease during the oxidation. The pressure decrease over both catalysts was attributed to the reduction of surface lattice O on Ag2O by CO. The results obtained for Au/Ag2O are in good agreement with previous data resulting from the use of Ag‐contaminated Au powder (Ag/Au‐b) having an oxidized surfaces. This finding suggests that the perimeters between AgOx zones and the bulk Au surface may not function as active sites during CO oxidation. A review of previous results obtained with Ag/Au‐b specimens having so‐called steady state surfaces indicates that AgOx species in such materials are reduced to the 0 state to form a Ag‐Au alloy that provides the active sites.
文摘Tetracyclic coumarins are a class of important compounds with diverse and superior pharmacolog‐ical activities.However,a direct stereoselective method from simple and readily‐made coumarins derivatives remains challenging due to the inertness of coumarins as dienophiles.Herein,we de‐velop a decarboxylative asymmetric[4+2]cycloaddition of 3‐cyanocoumarins with vinyl benzoxa‐zinones,affording the coumarin‐derived condensed rings bearing three continuous stereocenters in high yields with excellent diastereoselectivities(>20/1 d.r.)and enantioselectivities(up to 99%ee).This direct enantioselective reaction was achieved by a Pd(0)/Cu(I)bimetallic catalytic system.The mechanism studies indicated that the synergistic activation effect,in which chiral Cu(I)as an availa‐ble Lewis acid catalyst activates 3‐cyanocoumarin and chiral Pd(0)complex activates benzoxazi‐none by the formation ofπ‐allyl‐palladium intermediate,plays an important role on the stereoselec‐tive control.The current work provides a new activation modes of Cu catalyst in the Pd/Cu bimetal‐lic catalytic system.